, Volume 14, Issue 2, pp 389–396 | Cite as

Design of Tunable Multi-Band Metamaterial Perfect Absorbers Based on Magnetic Polaritons

  • Qianjun MaoEmail author
  • Chunzao Feng
  • Yizhi Yang


A tunable multi-band metamaterial perfect absorber is designed in this paper. The absorber made of a composite array of gold elliptical and circular disks on a thick metallic substrate, separated by a thin dielectric spacer. The absorptivity and the field enhancement of proposed structures are numerically investigated by the finite difference time domain method. Three absorption peaks (1.15, 1.55, and 2.05 μm) with the maximal absorption of 99.2, 99.7, and 97.3% have been achieved, respectively. By altering the dimensions of associated geometric parameters in the structure, three resonance wavelengths can be tuned individually. Physical mechanism of the multi-band absorption is construed as the resonance of magnetic polaritons. And the absorber exhibits the characteristics that are insensitive to the polarization angle due to its symmetry. The research results can have access to selective control of thermal radiation and the design of multi-band photodetectors.


Perfect absorbers Magnetic Polaritons Plasmonics Metamaterial 



A very special acknowledgement is made to the editors and referees who make important comments to improve this paper.

Funding Information

This work was supported by the National Natural Science Foundation of China (No. 51406033).


  1. 1.
    Lenert A, Bierman DM, Nam Y, Chan WR, Celanović I, Soljačić M, Wang EN (2014) A nanophotonic solar thermophotovoltaic device. Nat Nanotechnol 9:126–130CrossRefGoogle Scholar
  2. 2.
    Basu S, Chen YB, Zhang ZM (2010) Microscale radiation in thermophotovoltaic devices—a review. Int J Energy Res 31:689–716CrossRefGoogle Scholar
  3. 3.
    Wang H, Wang L (2013) Perfect selective metamaterial solar absorbers. Opt Express 21:A1078–A1093CrossRefGoogle Scholar
  4. 4.
    Mao Q, Feng C, Yang Y, Tan Y (2018) Design of broadband metamaterial near-perfect absorbers in visible region based on stacked metal-dielectric gratings. Mater Res Express 5:065801CrossRefGoogle Scholar
  5. 5.
    Reinhard B, Schmitt KM, Wollrab V, Neu J, Beigang R, Rahm M (2012) Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range. Appl Phys Lett 100:221101CrossRefGoogle Scholar
  6. 6.
    Quidant R, Ren B, Sailor MJ (2017) Virtual issue on plasmonic-based sensing. Acs Photonics 4:2382–2384CrossRefGoogle Scholar
  7. 7.
    Alves F, Kearney B, Grbovic D, Karunasiri G (2012) Narrowband terahertz emitters using metamaterial films. Opt Express 20:21025–21032CrossRefGoogle Scholar
  8. 8.
    Liu X, Tyler T, Starr T, Starr AF, Jokerst NM, Padilla WJ (2011) Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 107:045901–045904CrossRefGoogle Scholar
  9. 9.
    Yokoyama T, Dao TD, Chen K, Ishii S, Sugavaneshwar RP, Nagao T (2016) High temperature wavelength-selective thermal emitters based on metal-insulator-metal structures. Hyomen Kagaku 37:380–385CrossRefGoogle Scholar
  10. 10.
    Akhlaghi MK, Schelew E, Young JF (2015) Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation. Nat Commun 6:8233CrossRefGoogle Scholar
  11. 11.
    Cheng F, Yang X, Gao J (2014) Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers. Opt Lett 39(3185–3188):3185–3188CrossRefGoogle Scholar
  12. 12.
    Liu K, Hu H, Song H, Zeng X, Ji D, Jiang S, Gan Q (2013) Wide-angle and polarization-insensitive perfect absorber for organic photovoltaic layers. IEEE Photon Technol Lett 25:1266–1269CrossRefGoogle Scholar
  13. 13.
    Lee HM, Wu JC (2012) A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array. J Phys D Appl Phys 45:2202–2208Google Scholar
  14. 14.
    Xiao J, Yang T, Li P, Zhai P, Zhang Q (2012) Thermal design and management for performance optimization of solar thermoelectric generator. Appl Energy 93:33–38CrossRefGoogle Scholar
  15. 15.
    Ferry VE, Sweatlock LA, Pacifici D, Atwater HA (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8:4391–4397CrossRefGoogle Scholar
  16. 16.
    Long H, Bao L, Habeeb AA, Lu P (2017) Effects of doping concentration on the surface plasmonic resonances and optical nonlinearities in AGZO nano-triangle arrays. Opt Quant Electron 49:345CrossRefGoogle Scholar
  17. 17.
    Moreau A, Ciraci C, Mock JJ, Hill RT, Wang Q, Wiley BJ, Chilkoti A, Smith DR (2012) Controlled reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492:86–89CrossRefGoogle Scholar
  18. 18.
    Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96:251104CrossRefGoogle Scholar
  19. 19.
    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348CrossRefGoogle Scholar
  20. 20.
    Chen S, Cheng H, Yang H, Li J, Duan X, Gu C, Tian J (2011) Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime. Appl Phys Lett 99:253104CrossRefGoogle Scholar
  21. 21.
    Liu Y, Qiu J, Zhao J, Liu L (2017) General design method of ultra-broadband perfect absorbers based on magnetic polaritons. Opt Express 25:A980–A989CrossRefGoogle Scholar
  22. 22.
    Perchec JL, Desieres Y, Rochat N, Espiau de Lamaestreb R (2012) Subwavelength optical absorber with an integrated photon sorter. Appl Phys Lett 100:73CrossRefGoogle Scholar
  23. 23.
    Cui Y, Xu J, Fung KH, Jin Y, Kumar A, He S, Fang NX (2011) A thin film broadband absorber based on multi-sized nanoantennas. Appl Phys Lett 99:193Google Scholar
  24. 24.
    Huang G, Yang J, Bhattacharya P, Ariyawansa G, Perera AGU (2008) A multicolor quantum dot intersublevel detector with photoresponse in the terahertz range. Appl Phys Lett 92:011117CrossRefGoogle Scholar
  25. 25.
    Schain AJ, Hill RA, Grutzendler J (2014) Label-free in vivo imaging of myelinated axons inhealth and disease with spectral confocal reflectance microscopy. Nat Med 20:443–449CrossRefGoogle Scholar
  26. 26.
    Zhu B, Huang C, Feng Y, Zhao J, Jiang T (2010) Dual band switchable metamaterial electromagnetic absorber. Prog Electromagn Res B 24:121–129CrossRefGoogle Scholar
  27. 27.
    Zhai Y, Chen G, Xu J, Qi Z, Li X, Wang Q (2017) Multiple-band perfect absorbers based on the combination of Fabry-Perot resonance and the gap plasmon resonance. Opt Commun 399:28–33CrossRefGoogle Scholar
  28. 28.
    Ding P, Liang E, Cai G, Hu W, Fan C, Xue Q (2011) Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials. J Opt 13:075005CrossRefGoogle Scholar
  29. 29.
    Zhao Y, Fu C (2017) Multi-band selective absorbers made of 1D periodic Ag/SiO2/Ag core/shell coaxial cylinders horizontally lying on a planar substrate. Opt Express 25:A208–A222CrossRefGoogle Scholar
  30. 30.
    Zhao Y, Fu C (2017) Design of multi-band selective near-perfect metamaterial absorbers with SiO2 cylinder/rectangle shell horizontally embedded in opaque silver substrate. Int J Heat Mass Transf 113:281–285CrossRefGoogle Scholar
  31. 31.
    Nielsen MG, Gramotnev DK, Pors A, Albrektsen O, Bozhevolnyi SI (2011) Continuous layer gap plasmon resonators. Opt Express 19(20):19310–19322CrossRefGoogle Scholar
  32. 32.
    Dayal G, Ramakrishna SA (2013) Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks. J Opt 15:527–535CrossRefGoogle Scholar
  33. 33.
    Xu J, Zhao Z, Yu H, Yang L, Gou P, Cao J, Zou Y, Qian J, Shi T, Ren Q (2016) Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies. Opt Express 24:25742–25751CrossRefGoogle Scholar
  34. 34.
    Zhang B, Zhao Y, Hao Q, Kiraly B, Khoo I, Chen S, Huang T (2011) Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Opt Express 19(16):15221–15228CrossRefGoogle Scholar
  35. 35.
    Nielsen MG, Pors A, Albrektsen O, Bozhevolnyi SI (2012) Efficient absorption of visible radiation by gap plasmon resonators. Opt Express 20(12):13311–13319CrossRefGoogle Scholar
  36. 36.
    Chen J, Pei W, Zhang ZM, Lu Y, Hai M (2011) Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure. Phys Rev E Stat Nonlinear Soft Matter Phys 84:026603CrossRefGoogle Scholar
  37. 37.
    Mulla B, Sabah C (2016) Multi-band metamaterial absorber design based on plasmonic resonances for solar energy harvesting. Plasmonics 11:1313–1321CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Urban ConstructionWuhan University of Science and TechnologyWuhanChina

Personalised recommendations