, Volume 14, Issue 2, pp 375–381 | Cite as

Refractive Index Sensor Using Long-Range Surface Plasmon Resonance with Prism Coupler

  • Ayushi Paliwal
  • Monika Tomar
  • Vinay GuptaEmail author


Long-range surface plasmon resonance (LRSPR)-based sensors exhibit high sensitivity as compared to the conventional SPR sensors due to low losses. A high refractive index prism and low refractive index dielectrics are required to excite long-range surface plasmon (LRSP) mode. In this work, a symmetrical structure consisting of metal (Au) layer sandwiched between the two similar refractive index dielectrics has been utilized to excite LRSPR modes. Two dielectrics, i.e., LiF and MgF2 thin films have been chosen for glucose sensing. Theoretical simulations for optimizing the thickness of two dielectrics have been carried out. Highly sensitive refractive index sensors based on LRSPR have been developed using the two dielectric thin films and their sensitivities have been compared.


Resonance Plasmon Long-range surface plasmon Refractive index 



The authors are thankful to the Department of Science and technology (DST), Govt. of India, and University of Delhi for the financial support.


  1. 1.
    Huang D, Deng H, Yang P, Chu J (2010) Optical and electrical properties of multiferroic bismuth ferrite thin films fabricated by sol–gel technique. Mat Lett 64:2233–2235CrossRefGoogle Scholar
  2. 2.
    Berini P (2001) Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures. Phys Rev B 63:125417CrossRefGoogle Scholar
  3. 3.
    Lamprecht B, Krenn JR, Schider G, Ditlbacher H, Salerno M, Felidj N, Leitner A, Aussenegg FR (2001) Surface plasmon propagation in microscale metal stripes. Appl Phys Lett 79:51–53CrossRefGoogle Scholar
  4. 4.
    Degiron A, Smith D (2006) Numerical simulations of long-range plasmons. Opt Exp 14:1611–1625CrossRefGoogle Scholar
  5. 5.
    Huang W, Zhou Y, Jiayan D, Deng Y, Yi H (2018) Versatile visual logic operations based on plasmonic switching in label-free molybdenum oxide nanomaterials. Anal Chem 90:2384–2388CrossRefGoogle Scholar
  6. 6.
    Huang W, Zhou Y, Jiayan D, Deng Y, Yi H (2018) A negative feedback loop based on proton-driven in situ formation of plasmonic molybdenum oxide nanosheets. Phys Chem Chem Phys 20:4347–4350CrossRefGoogle Scholar
  7. 7.
    Li R, An H, Huang W, He Y (2018) Molybdenum oxide nanosheets meet ascorbic acid: tunable surface plasmon resonance and visual colorimetric detection at room temperature. Sensors Actuators B Chem 259:59–63CrossRefGoogle Scholar
  8. 8.
    Boltasseva A, Nikolajsen T, Leosson K, Kjaer K, Larsen MS, Bozhevolnyi SI (2005) Integrated optical components utilizing long-range surface plasmon polaritons. J Lightwave Tech 23:413–422CrossRefGoogle Scholar
  9. 9.
    Okamoto T, Simonen J, Kawata S (2008) Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach. Phys Rev B 77:115425CrossRefGoogle Scholar
  10. 10.
    Dostálek J, Roskamp RF, Knoll W (2009) Coupled long range surface plasmons for the investigation of thin films and interfaces. Sensors Actuators B Chem 139:9–12CrossRefGoogle Scholar
  11. 11.
    Kasry A, Knoll W (2006) Long range surface plasmon fluorescence spectroscopy. Appl Phys Lett 89:101106CrossRefGoogle Scholar
  12. 12.
    Nenninger GG, TobisÏka P, Homola J, Yee SS (2001) Long-range surface plasmons for high-resolution surface plasmon resonance sensors. Sensors Actuators B Chem 74:145–151CrossRefGoogle Scholar
  13. 13.
    Paliwal A, Sharma A, Tomar M, Gupta V (2014) Optical properties of WO3thin films using surface plasmon resonance technique. J Appl Phys 115:043104CrossRefGoogle Scholar
  14. 14.
    Ozdemir SK, Turhan-Sayan G (2003) Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor. J Lightwave Technol 21:805–814CrossRefGoogle Scholar
  15. 15.
    H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Verlag Berlin Hiedelberg, Springer Tokyo (1988)Google Scholar
  16. 16.
    J. D. McGee, Photoelectronic image devices, Academic press Inc. New York, USA (1972)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia
  2. 2.Department of Physics, Miranda HouseUniversity of DelhiDelhiIndia

Personalised recommendations