, Volume 14, Issue 2, pp 365–374 | Cite as

Wet-Chemical Etching: a Novel Nanofabrication Route to Prepare Broadband Random Plasmonic Metasurfaces

  • Piragash Kumar R. M.
  • Venkatesh A.
  • Moorthy V. H. S.Email author


Broadband optical metasurfaces are gaining enormous attention owing to their potential applications in optoelectronic devices, sensors, and flat optics. Here, we demonstrate for the first time a single-step, novel wet-chemical etching-based nanofabrication method to produce broadband random plasmonic metasurfaces (RPMS). The nanofabrication method is inexpensive, simple, versatile, and compatible with semiconductor processing technologies. The RPMS is made of a single-layer optically thick Ag thin film nanostructured with random nanoholes and nanocavities. The building block of the RPMS is a multi-resonant meta-cell composed of disordered nanoholes with variety of sizes, shapes, and aspect ratios. The composition of the multi-resonant meta-cell can be modified by varying the duration of immersion (DoI) of the Ag thin films in the etchant solution. The RPMS exhibits broadband extraordinary transmission in the 550–800 nm wavelength range with an efficiency of transmission of 2.3. Broadband absorption of light is observed in the entire visible region; incident light is strongly absorbed (~70%) in the nanocavities via localized surface plasmons (LSPs) in the 400–550 nm wavelength range. Further, 40–50% of the light is absorbed in the metal film via surface plasmon polaritons (SPPs) excited by the multi-resonant meta-cells, elsewhere on the spectrum. The RPMS exhibits Lambertian type scattering with nearly 50% efficiency in the entire visible wavelength range. The RPMS with these broadband optical properties can find useful applications in plasmonic solar cells, surface-enhanced Raman spectroscopy (SERS), thermoplasmonic devices, and plasmoelectric potentials based all-metal optoelectronic devices.


Wet-chemical etching Random plasmonic metasurfaces Optical metasurfaces Broadband absorption Scattering and plasmonic solar cells 



The authors would like to acknowledge the support of Dr. M. G. Sreenivasan (Technical Manager, Hind High Vacuum Company Pvt. Ltd. India) in performing the optical spectroscopy measurements for the present study. Dr. V. H. S wants to acknowledge Dr. R. Bhattacharya, Honorary Adjunct Professor, IIEST, Shibpur, India for introducing him to the exciting field of plasmonics.


The authors would like to thank the Department of Science and Technology (DST), India (Grant no: DST/TM/SERI/2K10/63(G)) and Department of Biotechnology (DBT), India (Grant no: BT/PR12874/NNT/28/452/2009)) for financially supporting the research work.

Supplementary material

11468_2018_813_MOESM1_ESM.docx (7 mb)
ESM 1 SI.pdf: a file containing additional information as referenced to in the main text. (DOCX 7205 kb)

Method.mp4: A video showing the method of fabrication of nanostructures on optically thick Ag thin films. The Ag thin film is immersed in the etchant solution and bubbles appear as a result of nanostructuring of the Ag thin film. (MP4 50,287 kb)


  1. 1.
    Pors A, Nielsen GM, Eriksen LR, Bozhevolnyi SI (2013) Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett 13:829–834CrossRefGoogle Scholar
  2. 2.
    Zhong J, An N, Yi N, Zhu M, Song Q, Xiao S (2016) Broadband and tunable-focus flat lens with dielectric metasurface. Plasmonics 11:537–541CrossRefGoogle Scholar
  3. 3.
    Pala AR, Butun S, Aydin K, Atwater AH (2016) Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces. Sci Rep 6:1–7CrossRefGoogle Scholar
  4. 4.
    Li W, Ying Y, Qiao X, Li Q, Qiao L, Zheng J, Jiang L, Che S (2016) Plasmonic metasurface for light absorption enhancement in GaAs thin film. Plasmonics 11:1401–1406CrossRefGoogle Scholar
  5. 5.
    Zhang N, Liu K, Liu Z, Song H, Zang X, Ji D, Cheney A, Jiang S, Gan Q (2015) Ultrabroadband metasurface for efficient light trapping and localization: a universal surface-enhanced Raman spectroscopy substrate for “all” excitation wavelengths. Adv Mater Interfaces 2:1500142–1500148CrossRefGoogle Scholar
  6. 6.
    Luo XG (2015) Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron 58:594201–594218CrossRefGoogle Scholar
  7. 7.
    Yu N, Capasso F (2015) Optical metasurfaces and prospect of their applications including fiber optics. J Lightwave Technol 33:2344–2358CrossRefGoogle Scholar
  8. 8.
    Garcia-Vidal FJ, Martin-Moreno L, Pendry JB (2005) Surfaces with holes in them: new plasmonic metamaterials. J Opt A Pure Appl Opt 7:S97–S101CrossRefGoogle Scholar
  9. 9.
    Meinzer N, Barnes LW, Hooper RI (2014) Plasmonic meta-atoms and metasurfaces. Nat Photonics 8:889–898CrossRefGoogle Scholar
  10. 10.
    Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46CrossRefGoogle Scholar
  11. 11.
    Kildishev VA, Boltasseva A, Shalaev MV (2013) Planar photonics with metasurfaces. Science 339:1232009–1232014CrossRefGoogle Scholar
  12. 12.
    Yu N, Capasso F (2014) Flat optics with designer metasurfaces. Nat Mater 13:139–150CrossRefGoogle Scholar
  13. 13.
    Najafabadi FA, Pakizeh T (2018) Optical circular conversion dichroism via heterogeneous planar nanoplasmonic metasurface. Plasmonics.
  14. 14.
    Hedayati KM, Elbahri M (2017) Review of metasurface plasmonic structural color. Plasmonics 12:1463–1479CrossRefGoogle Scholar
  15. 15.
    Marcellis DA, Palange E, Janneh M, Rizza C, Giattoni A, Mengali S (2017) Design optimization of plasmonic metasurfaces for mid-infrared high-sensitivity chemical sensing. Plasmonics 12:293–298CrossRefGoogle Scholar
  16. 16.
    Tordera D, Zhao D, Volkov VA, Crispin X, Jonsson PM (2017) Thermoplasmonic semitransparent nanohole electrodes. Nano Lett 17:3145–3151CrossRefGoogle Scholar
  17. 17.
    Sheldon TM, van de Groep J, Brown MA, Polaman A, Atwater AH (2014) Plasmonic electric potentials in metal nanostructures. Science 346:828–831CrossRefGoogle Scholar
  18. 18.
    Vynck K, Burresi M, Riboli F, Wiersma S (2012) Photon management in two-dimensional disordered media. Nat Mater 11:1017–1022CrossRefGoogle Scholar
  19. 19.
    Atwater AH, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213CrossRefGoogle Scholar
  20. 20.
    Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780–1782CrossRefGoogle Scholar
  21. 21.
    Ye D, Wang Z, Wang Z, Kuiwen X, Zhang B, Huangfu J (2012) Towards experimental perfectly matched layers with ultra-thin metamaterial surfaces. IEEE Trans Antennas Propag 60(11):5164–5172CrossRefGoogle Scholar
  22. 22.
    Zhang B, Hendrickson J, Guo J (2013) Multispectral near-perfect metamaterial absorber using spatially multiplexed plasmon resonance metal square structures. J Opt Soc Am B 30:656–662CrossRefGoogle Scholar
  23. 23.
    Jang M, Horie Y, Shibukawa A, Brake J, Liu Y, Kamali MS, Arbabi A, Ruan H, Faraon A, Yang C (2018) Wavefront shaping with disorder-engineered metasurfaces. Nat Photonics 12:84–90CrossRefGoogle Scholar
  24. 24.
    Bertolotti J (2018) Designing disorder. Nat Photonics 12:59–67CrossRefGoogle Scholar
  25. 25.
    Dupre M, Hsu L, Kante B (2018) On the design of random metasurface devices. arXiv:1802.01202Google Scholar
  26. 26.
    Reilly TH, Tenent RC, Barnes MT, Rowlen KL, van de Lagemaat J (2010) Controlling the optical properties of disordered nanohole silver films. ACS Nano 4:615–624CrossRefGoogle Scholar
  27. 27.
    Petoukhoff CE, O’Carroll DM (2015) Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces. Nat Commun 6:1–13CrossRefGoogle Scholar
  28. 28.
    Akselrod MG, Huang J, Hoang BT, Bowen TP, Su L, Smith RD, Mikkelsen HM (2015) Large-area metasurface perfect absorbers from visible to near-infrared. Adv Mater 27:8028–8034CrossRefGoogle Scholar
  29. 29.
    Piragash Kumar RM, Venkatesh A, Moorthy VHS (2016) Process of formation of disordered nano-holes in optically thick silver films. Indian patent. Filing no. 201641037059Google Scholar
  30. 30.
    Ghodssi R, Lin P (2011) MEMS materials and processes handbook. In: Burns WD (ed) MEMS wet-etch processes and procedures. Springer, New York, pp 457–665Google Scholar
  31. 31.
    Sannomiya T, Scholder O, Jefimovs K, Hafner C, Dahlin AB (2011) Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications. Small 7:1653–1663CrossRefGoogle Scholar
  32. 32.
    Przybilla F, Degiron A, Laluet J-Y, Genet C, Ebbesen TW (2006) Optical transmission in perforated noble and transition metal films. J Opt A Pure Appl Opt 8:458–463CrossRefGoogle Scholar
  33. 33.
    Koerkamp KJK, Enoch S, Segerink BF, van Hulst FN, Kuipers L (2004) Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys Rev Lett 92:183901–183904CrossRefGoogle Scholar
  34. 34.
    Teperik TV, Garcia De Abajo FJ, Borisov AG, Abdelsalam M, Bartlett PN, Sugawara Y, Baumberg JJ (2018) Omnidirectional absorption in nanostructured metal surfaces. Nat Photonics 2:299–301CrossRefGoogle Scholar
  35. 35.
    Perney NMB, Garcia de Abajo FJ, Baumberg JJ, Tang A, Netti MC, Charlton MDB, Zoorob ME (2007) Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering. Phys Rev B 76:035426–035430CrossRefGoogle Scholar
  36. 36.
    Zongfu Y, Rama A, Fan S (2010) Fundamental limit of nanophotonic light trapping in solar cells. Proc Natl Acad Sci U S A 107:17491–17496CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Piragash Kumar R. M.
    • 1
  • Venkatesh A.
    • 1
  • Moorthy V. H. S.
    • 1
    Email author
  1. 1.Research Laboratory for Plasmonics, Department of Electronics and Communication, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalIndia

Personalised recommendations