Advertisement

Plasmonics

, Volume 14, Issue 2, pp 327–333 | Cite as

Tunable Absorbers Based on an Electrically Controlled Resistive Layer

  • Changlei Zhang
  • Cheng Huang
  • Mingbo Pu
  • Jiakun Song
  • Xiangang LuoEmail author
Article
  • 121 Downloads

Abstract

In this article, an electrically controlled resistive layer (ECRL) is proposed to construct tunable absorbers. This ECRL is composed of VO2 film and resistive layer without lithography pattern. The effective resistance of ECRL is numerically verified to be tuned from 18 to 300 Ω/sq as the VO2 conductivity is changed based on electro-thermally induced insulator-to-metal transition. With such a large tuning range of the effective resistance, the ECRL is utilized to realize a planar tunable bidirectional absorber with absorption efficiency dynamically tuned between 98 and 18% through controlling the conductivity of VO2. In addition, we demonstrate that the ECRL is also suitable for the design of non-planar tunable absorber. It is still found that the ECRL-based tunable absorbers have the wide angle and polarization-insensitive absorbing properties. These results may be of great interest for tunable absorbing, detecting, smart window, and thermo-solar cell applications.

Keywords

Electrically controlled resistive layer Tunable bidirectional absorber Tunable broadband absorber Polarization-insensitive Terahertz waves 

Notes

Funding Information

This work was sponsored by the National Basic Research (973) Program of China under grant no. 2013CBA01700 and the National Natural Science Foundation of China under grant nos. 61475160, 61605213, and 61775218.

References

  1. 1.
    Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402CrossRefGoogle Scholar
  2. 2.
    Chen H (2012) Interference theory of metamaterial perfect absorbers. Opt Express 20(7):7165–7172CrossRefGoogle Scholar
  3. 3.
    Duan G, Schalch J, Zhao X, Zhang J, Averitt RD, Zhang X (2018) Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies. Opt Express 26(3):2242–2251CrossRefGoogle Scholar
  4. 4.
    Zhang C, Huang C, Pu M, Song J, Zhao Z, Wu X, Luo X (2017) Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance. Sci Rep 7(1):5652CrossRefGoogle Scholar
  5. 5.
    Li J, Yu P, Tang C, Cheng H, Li J, Chen S, Tian J (2017) Bidirectional perfect absorber using free substrate plasmonic metasurfaces. Adv Opt Mater 5:1700152CrossRefGoogle Scholar
  6. 6.
    Chen S, Cheng H, Yang H, Li J, Duan X, Gu C, Tian J (2011) Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime. Appl Phys Lett 99(25):253104CrossRefGoogle Scholar
  7. 7.
    Han S, Shin JH, Jung PH, Lee H, Lee BJ (2016) Broadband solar thermal absorber based on optical metamaterials for high-temperature applications. Adv Opt Mater 4(8):1265–1273CrossRefGoogle Scholar
  8. 8.
    Qian Q, Sun T, Yan Y, Wang C (2017) Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled mie resonances. Adv Opt Mater 5(13):1700064CrossRefGoogle Scholar
  9. 9.
    Luo X (2018) Subwavelength optical engineering with metasurface waves. Adv Opt Mater 6(7):1701201CrossRefGoogle Scholar
  10. 10.
    Luo X (2015) Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron 58(9):594201CrossRefGoogle Scholar
  11. 11.
    Tennant A, Chambers B (2004) A single-layer tunable microwave absorber using an active FSS. IEEE Microw Wireless Compon Lett 14(1):46–47CrossRefGoogle Scholar
  12. 12.
    Mias C, Yap JH (2007) A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid. IEEE Trans Antennas Propag 55(7):1955–1962CrossRefGoogle Scholar
  13. 13.
    Qazilbash MM, Brehm M, Chae BG, Ho PC, Andreev GO, Kim BJ, Kim HT (2007) Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318(5857):1750–1753CrossRefGoogle Scholar
  14. 14.
    Zheng X, Xiao Z, Ling X (2018) A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film. Plasmonics 13(1):287–291CrossRefGoogle Scholar
  15. 15.
    Yang J, Qu S, Ma H, Wang J, Pang Y (2017) Dual-band tunable infrared metamaterial absorber with VO2 conformal resonators. Opt Commun 402:518–522CrossRefGoogle Scholar
  16. 16.
    Huang WX, Yin XG, Huang CP, Wang QJ, Miao TF, Zhu YY (2010) Optical switching of a metamaterial by temperature controlling. Appl Phys Lett 96(26):261908CrossRefGoogle Scholar
  17. 17.
    Kats MA, Blanchard R, Genevet P, Yang Z, Qazilbash MM, Basov DN, Capasso F (2013) Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Opt Lett 38(3):368–370CrossRefGoogle Scholar
  18. 18.
    Liu M, Hwang HY, Tao H, Strikwerda AC, Fan K, Keiser GR, Wolf SA (2012) Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487(7407):345–348CrossRefGoogle Scholar
  19. 19.
    Jeong YG, Han S, Rhie J, Kyoung JS, Choi JW, Park N, Kim DS (2015) A vanadium dioxide metamaterial disengaged from insulator-to-metal transition. Nano Lett 15(10):6318–6323CrossRefGoogle Scholar
  20. 20.
    Liu L, Kang L, Mayer TS, Werner DH (2016) Hybrid metamaterials for electrically triggered multifunctional control. Nat Commun 7:13236CrossRefGoogle Scholar
  21. 21.
    Palik ED (1998) Handbook of optical constants of solids. Academic, San DiegoGoogle Scholar
  22. 22.
    Pu M, Ma X, Li X, Guo Y, Luo X (2017) Merging plasmonics and metamaterials by two-dimensional subwavelength structures. J Mater Chem C 5(18):4361–4378CrossRefGoogle Scholar
  23. 23.
    Feng Q, Pu M, Hu C, Luo X (2012) Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt Lett 37(11):2133–2135CrossRefGoogle Scholar
  24. 24.
    Pu M, Hu C, Wang M, Huang C, Zhao Z, Wang C, Luo X (2011) Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt Express 19(18):17413–17420CrossRefGoogle Scholar
  25. 25.
    Knott EF, Shaeffer JF, Tuley MT (2004) Radar cross section. SciTech Publ, RaleighCrossRefGoogle Scholar
  26. 26.
    Xiao H, Wang J, Huang H, Lu L, Lin Q, Fan Z, Li D (2015) Performance optimization of flexible a-Si: H solar cells with nanotextured plasmonic substrate by tuning the thickness of oxide spacer layer. Nano Energy 11:78–87CrossRefGoogle Scholar
  27. 27.
    Qu Y, Li Q, Gong H, Du K, Bai S, Zhao D, Qiu M (2016) Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films. Adv Opt Mater 4(3):480–486CrossRefGoogle Scholar
  28. 28.
    Hu C, Zhao Z, Chen X, Luo X (2009) Realizing near-perfect absorption at visible frequencies. Opt Express 17(13):11039–11044CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations