Advertisement

Plasmonics

pp 1–5 | Cite as

High-quality Temperature Sensor Based on the Plasmonic Resonant Absorber

  • Jian Chen
  • Houjiao Zhang
  • Guiqiang Liu
  • Jiasong Liu
  • Yi Liu
  • Li Tang
  • Zhengqi Liu
Article
  • 108 Downloads

Abstract

Aiming at the achievement of temperature measurement with high sensitivity in the sub-wavelength scale, an all-metal meta-surface (AMMS)-based sensor is numerically demonstrated. Based on the sharp plasmonic resonances and the simultaneous use of perfect absorption response, temperature sensing with an ultra-high enhancement factor of 263 for the spectral figure of merit (FOM) factor is obtained in comparison with that of the common plasmonic sensors. Moreover, spectral shift-related sensitivity S is up to 0.274 nm/°C. These sensing properties indicate the designed sensor can play a significant role in optoelectronic devices for high-integrated and high signal-to-noise ratio temperature detection.

Keywords

Plasmonic Meta-surface Absorption Temperature sensing 

Notes

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grants 51761015, 11564017, and 11464019), Natural Science Foundation of Jiangxi Province (Grants 20171BAB201016).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193CrossRefPubMedGoogle Scholar
  2. 2.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Ann Rev Phys Chem 58:267–297CrossRefGoogle Scholar
  3. 3.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453CrossRefPubMedGoogle Scholar
  4. 4.
    Mandal P (2016) Plasmonic perfect absorber for refractive index sensing and SERS. Plasmonics 11:223–229CrossRefGoogle Scholar
  5. 5.
    Chen L, Li GC, Liu GY, Dai QF, Lan S, Tie SL, Deng HD (2013) Sensing the moving direction, position, size, and material type of nanoparticles with the two-photon-induced luminescence of a single gold nanorod. J Phys Chem C 117:20146–20153CrossRefGoogle Scholar
  6. 6.
    Liu G, Yu M, Liu Z, Liu X, Huang S, Pan P, Wang Y, Liu M, Gu G (2015) One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering. Nanotechnology 26:185702CrossRefPubMedGoogle Scholar
  7. 7.
    Sreekanth KV, Alapan Y, ElKabbash M, Ilker E, Hinczewski M, Gurkan UA, De Luca A, Strangi G (2016) Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat Mater 15:621–627CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gao Y, Gan Q, Bartoli FJ (2014) Spatially selective plasmonic sensing using metallic nanoslit arrays. IEEE J Sel Top Quantum Electron 20:6900306Google Scholar
  9. 9.
    Liu Z, Liu G, Huang S, Liu X, Pan P, Wang Y, Gu G (2015) Multispectral spatial and frequency selective sensing with ultracompact cross-shaped antenna plasmonic crystals. Sensors Actuators B 215:480–488CrossRefGoogle Scholar
  10. 10.
    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348CrossRefPubMedGoogle Scholar
  11. 11.
    Ming X, Tan Q (2017) Design method of a broadband wide-angle plasmonic absorber in the visible range. Plasmonics 12:117–124CrossRefGoogle Scholar
  12. 12.
    Zhao F, Xie Q, Xu M, Wang S, Zhou J, Liu F (2015) RNA aptamer based electrochemical biosensor for sensitive and selective detection of cAMP. Biosens Bioelectron 66:238–243CrossRefPubMedGoogle Scholar
  13. 13.
    Jamali AA, Witzigmann B (2014) Plasmonic perfect absorbers for biosensing applications. Plasmonics 9:1265–1270CrossRefGoogle Scholar
  14. 14.
    Deng HD, Chen XY, Xu Y, Miroshnichenko AE (2015) Single protein sensing with asymmetric plasmonic hexamer via Fano resonance enhanced two-photon luminescence. Nanoscale 7:20405–20413CrossRefPubMedGoogle Scholar
  15. 15.
    Wu T, Liu Y, Yu Z, Peng Y, Shu C, Ye H (2014) The sensing characteristics of plasmonic waveguide with a ring resonator. Opt Express 22:7669–7677CrossRefPubMedGoogle Scholar
  16. 16.
    (1978) CRC Handbook of chemistry and physics, CRC Press, West Palm Beach, FLGoogle Scholar
  17. 17.
    Fan J, Zhang J, Lu P, Tian M, Xu J, Liu D (2014) A single-mode fiber sensor based on core-offset inter-modal interferometer. Opt Commun 320:33–37CrossRefGoogle Scholar
  18. 18.
    Ran ZL, Rao YJ, Liu WJ, Liao X, Chiang KS (2008) Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index. Opt Express 16:2252–2263CrossRefPubMedGoogle Scholar
  19. 19.
    Zhu Z, Liu L, Liu Z, Zhang Y, Zhang Y (2017) Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit. Opt Lett 42:2948–2951CrossRefPubMedGoogle Scholar
  20. 20.
    Kong Y, Wei Q, Liu C, Wang S (2017) Nanoscale temperature sensor based on Fano resonance in metal–insulator–metal waveguide. Opt Commun 384:85–88CrossRefGoogle Scholar
  21. 21.
    Zhang P, Liu L, He Y, JiJun Y, Ma G (2016) Temperature-regulated surface plasmon resonance imaging system for bioaffinity sensing. Plasmonics 11:771–779CrossRefGoogle Scholar
  22. 22.
    Palik ED (1985) Handbook of optical constants of solids. AcademicGoogle Scholar
  23. 23.
    Liu G, Hu Y, Liu Z, Chen Y, Cai Z, Zhang X, Huang K (2016) Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method. Phys Chem Chem Phys 16:4320–4328CrossRefGoogle Scholar
  24. 24.
    Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method 2nd ed. Artech House Publishers, BostonGoogle Scholar
  25. 25.
    Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402CrossRefPubMedGoogle Scholar
  26. 26.
    Cui Y, He Y, Jin Y, Ding F, Yang L, Ye Y, Zhong S, Lin Y, He S (2014) Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev 8:495–520CrossRefGoogle Scholar
  27. 27.
    Liu Z, Liu X, Huang S, Pan P, Chen J, Liu G, Gu G (2015) Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. ACS Appl Mater Interfaces 7:4962–4968CrossRefPubMedGoogle Scholar
  28. 28.
    Wang B-X (2017) Single-patterned metamaterial structure enabling multi-band perfect absorption. Plasmonics 12:95–102CrossRefGoogle Scholar
  29. 29.
    Halas NJ, Lal S, Chang W, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961CrossRefPubMedGoogle Scholar
  30. 30.
    Li Z, Butun S, Aydin K (2014) Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. ACS Nano 8:8242–8248CrossRefPubMedGoogle Scholar
  31. 31.
    Wang H, Meng H, Xiong R, Wang Q, Huang B, Zhang X, Yu W, Tan C, Huang X (2016) Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference. Opt Commun 364:191–194CrossRefGoogle Scholar
  32. 32.
    Lu P, Chen Q (2010) Asymmetrical fiber Mach–Zehnder interferometer for simultaneous measurement of axial strain and temperature. IEEE Photon J 2:942–953CrossRefGoogle Scholar
  33. 33.
    Srivastava T, Das R, Jha R (2013) Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide. Plasmonics 8:515–521CrossRefGoogle Scholar
  34. 34.
    Wu T, Liu Y, Yu Z, Ye H, Peng Y, Shu C, Yang C, Zhang W, He H (2015) A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity. Opt Commun 339:1–6CrossRefGoogle Scholar
  35. 35.
    Ruemmele JA, Hall WP, Ruvuna LK, Van Duyne RP (2013) A localized surface plasmon resonance imaging instrument for multiplexed biosensing. Anal Chem 85:4560–4566CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jian Chen
    • 1
    • 2
  • Houjiao Zhang
    • 1
  • Guiqiang Liu
    • 1
  • Jiasong Liu
    • 1
  • Yi Liu
    • 1
  • Li Tang
    • 1
  • Zhengqi Liu
    • 1
  1. 1.Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, School of Physics, Communication and ElectronicsJiangxi Normal UniversityNanchangChina
  2. 2.School of Physics and Telecommunication EngineeringSouth China Normal UniversityGuangzhouChina

Personalised recommendations