, Volume 14, Issue 1, pp 247–252 | Cite as

Silver Nanoparticle Effect on Spectral-Kinetic Properties of Thin Nickel Phthalocyanine Films

  • O. V. BuganovEmail author
  • A. D. Zamkovets
  • A. N. Ponyavina
  • S. A. Tikhomirov
  • M. H. Pham
  • B. T. Nguyen
  • H. D. Nguyen


We have investigated spectral and spectral-kinetic properties of hybrid plasmonic nanocomposites on silver nanoparticle monolayers and thin nickel phthalocyanine films. The spectroscopic results obtained by the femtosecond pump-probe technique demonstrate that a fast optical response in the range of long-wavelength nickel phthalocyanine electronic absorption bands becomes observable and registered when the nickel phthalocyanine thin films contact with silver nanoparticles. This could be assigned to the plasmon-related modification and the enhancement of organic subsistent absorption at steady-state absorption spectra of hybrid nanostructures.


Dynamic of electron excitations Silver nanoparticles Surface plasmon resonance Organic semiconductors Near-field intensity 



The financial support from Belarussian Academy of Sciences and Vietnam Academy of Science and Technology to authors through Projects VAST.HTQT.BELARUS.02/16-17 and VAST01.10/15-16 is greatly acknowledged.


  1. 1.
    Leznoff CC, Lever ABP (1996) Phthalocyanines: properties and applications. VCH, WeinheimGoogle Scholar
  2. 2.
    Hohnholza D, Steinbrecherb S, Hanacka M (2000) Applications of phthalocyanines in organic light emitting devices. J Mol Struct 521:231–237CrossRefGoogle Scholar
  3. 3.
    Itoh E, Ohmori Y, Miyairi K (2004) Photovoltaic properties of organic p-n junction devices consisting of phthalocyanine and n-type porphyrin deposited on an n-type TiO2 layer. Jpn J Appl Phys 43:817–821CrossRefGoogle Scholar
  4. 4.
    Van Flassen E, Kerp H (2003) Explanation of the low oxigen sensitivity of thin film phthalocyanine gas sensors. Sensors Actuators B 88:329–333CrossRefGoogle Scholar
  5. 5.
    Buganov OV, Zamkovets AD, Ponyavina AN, Tikhomirov SA (2014) Plasmon-related modification of spectral kinetic properties of copper phthalocyanine thin films in the presence of silver nanoparticles. J Appl Spectrosc 81:92–96CrossRefGoogle Scholar
  6. 6.
    Cheng WD, Wu DS, Zhang H, Chen JT (2001) Electronic structure and spectrum third-order nonlinear optics of the metal phthalocyanines PcM (M= Zn, Ni, TiO). Phys Rev B 64:125109-125109-11Google Scholar
  7. 7.
    Johnson P, Christy R (1972) Optical constants of the noble metals. Phys Rev B l6:4370–4379CrossRefGoogle Scholar
  8. 8.
    Hovel H, Fritz S, Hilger A, Kreibig U, Vollmer M (1993) Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys Rev B 48:18148–18154CrossRefGoogle Scholar
  9. 9.
    Zamkovets AD, Ponyavina AN (2013) Near-field effect on spectral properties of layered silver-copper phthalocyanine nanocomposites. J Appl Spectrosc 79:908–913CrossRefGoogle Scholar
  10. 10.
    Stsiapura VI, Maskevich AA, Tikhomirov SA, Buganov OV (2010) Charge transfer process determines ultrafast excited state deactivation of thioflavin T in low-viscosity solvent. J Phys Chem A 114:8345–8350CrossRefGoogle Scholar
  11. 11.
    Lutsev LV, Kopytin MN, Sitnikov AV, Stogne OV (2005) Properties of nanogranular metal-dielectric composites in strong electric fields and cluster electron states. Fizika Tverdogo Tela 47:2080–2090 (in Russian)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.B.I. Stepanov Institute of PhysicsNAS of BelarusMinskBelarus
  2. 2.Institute of PhysicsVietnam Academy of Science and TechnologyHanoiVietnam

Personalised recommendations