, Volume 14, Issue 1, pp 219–230 | Cite as

Magnetic Field Effect on Fresnel Coefficients of the Thin Slab of Graphite Nanocomposite

  • N. Sepehri JavanEmail author
  • F. Rouhi Erdi


In this theoretical study, optical properties of a thin slab including graphite nanoparticles doped in a host medium such as silica and silicon have been investigated. A constant magnetic field is used for controlling Fresnel coefficients of the slab. Depending on the direction of the normal vector of the basal plane of the graphite structure with respect to the electric field of the incident electromagnetic wave (perpendicular or parallel), optical behavior of graphite is different. Electric permittivity of an individual magnetized graphite nanoparticle is calculated by a semi-empirical Drude-like model for both kinds of the normal vector of the basal plane orientation. By means of well-known Maxwell-Garnett theory, effective permittivity of the magnetized nanocomposite slab is obtained. It is shown that at the mid-IR frequency range, exerting a magnetic field of few hundred Tesla can lead to the substantial variations of Fresnel coefficients. Effect of the magnetic field on the optical properties of the slab is more evident when the population of the graphite nanoparticles with the parallel orientation of the basal plane is increased.


Nanocomposite Graphite Drude model Maxwell-Garnett Fresnel coefficients Basal plane Magnetic field Absorption 


Funding Information

The authors of the present article would like to acknowledge the financial support of the Iran National Science Foundation (INSF).


  1. 1.
    Cao G (2004) Nanostructures & nanomaterials: synthesis, properties & applications. Imperial college press, LondonCrossRefGoogle Scholar
  2. 2.
    Fendler JH (1998) Nanoparticles and nanostructured films: preparation, characterization and applications. Wiley, New YorkCrossRefGoogle Scholar
  3. 3.
    Masuhara H, Nakanishi H, Sasaki K (2003) Single organic nanoparticles (nanoscience and technology). Springer-Verlag, BerlinCrossRefGoogle Scholar
  4. 4.
    Bout DAV (2001) Metal nanoparticles: synthesis characterization and applications. Dekker, New YorkGoogle Scholar
  5. 5.
    Cai W, Shalaev V (2009) Optical metamaterials: fundamentals and applications. Springer, BerlinGoogle Scholar
  6. 6.
    Hutter E, Fendler JH (2004) Adv Mater 16:1685CrossRefGoogle Scholar
  7. 7.
    Yuan H-K, Chettiar UK, Cai W, Kildishev A, Boltasseva A, Drachev V, Shalaev V (2007) Opt Express 15:1076CrossRefGoogle Scholar
  8. 8.
    Oraevskii AN, Protsenko IE (2000) JETP Lett 72:445CrossRefGoogle Scholar
  9. 9.
    Oraevskii AN, Protsenko IE (2001) Quantum Electron 31:252CrossRefGoogle Scholar
  10. 10.
    Shen JT, Catrysse PB, Fan S (2005) Phys Rev Lett 94:197401CrossRefGoogle Scholar
  11. 11.
    Lin SY, Hietala VM, Wang L, Jones ED (1996) Opt Lett 21:1771CrossRefGoogle Scholar
  12. 12.
    Sukhov SV (2005) Quantum Electron 35:741CrossRefGoogle Scholar
  13. 13.
    Garcia de Abajo FJ, Gomez-Santos G, Blanco LA, Borisov AG, Shabanov SV (2005) Phys Rev Lett 95:067403CrossRefGoogle Scholar
  14. 14.
    Martinez ED, Boissiere C, Grosso D, Sanchez C, Troiani H, Soler-Illia GJAA (2014) J Phys Chem C 118:13137CrossRefGoogle Scholar
  15. 15.
    Hagglund C, Apell SP (2012) J Phys Chem Lett 3:1275CrossRefGoogle Scholar
  16. 16.
    Nagel JR, Scarpulla MA (2010) Opt Express 18:139CrossRefGoogle Scholar
  17. 17.
    Hagglund C, Zeltzer G, Ruiz R, Thomann I, Lee H, Brongersma ML, Bent SF (2013) Nano Lett 13:3352CrossRefGoogle Scholar
  18. 18.
    Ding P, Liang E, Cai G, Hu W, Fan C, Xue Q (2011) J Opt 13:075005CrossRefGoogle Scholar
  19. 19.
    Kachan S, Stanzel O, Ponyavina A (2006) Appl Phys B Lasers Opt 84:281CrossRefGoogle Scholar
  20. 20.
    Moiseev SG (2011) Phys Wave Phenom 191:47CrossRefGoogle Scholar
  21. 21.
    Moiseev SG (2011) Appl Phys A Mater Sci Process 103:619CrossRefGoogle Scholar
  22. 22.
    Kachan S, Stanzel O, Ponyavina A (2006) Appl Phys B 84:281CrossRefGoogle Scholar
  23. 23.
    Ding F, Jin Y, Li B, Cheng H, Mo L, He S (2014) Laser Photonics Rev 8:946CrossRefGoogle Scholar
  24. 24.
    Miles RW, Hynes KM, Forbes I (2005) Prog Cryst Growth Charact Mater 51:1CrossRefGoogle Scholar
  25. 25.
    Atwater HA, Polman A (2010) Nat Mater 9:205CrossRefGoogle Scholar
  26. 26.
    Watts CM, Liu X, Padilla WJ (2012) Adv Mater 24Google Scholar
  27. 27.
    He S et al (2009) Mater Today 12:16CrossRefGoogle Scholar
  28. 28.
    Schuller JA (2010) et al. Nat Mater 9:193CrossRefGoogle Scholar
  29. 29.
    Tan Y, Tang J, Deng A, Wu Q, Zhang T, Li H (2013) J Magn Magn Mater 326:41CrossRefGoogle Scholar
  30. 30.
    Woo S, Yoo C-S, Kim H, Lee M, Quevedo-Lopez M, Choi H (2017) Electron Mater Lett 13:398CrossRefGoogle Scholar
  31. 31.
    Liu XG, Ou ZQ, Geng DY, Han Z, Jiang JJ, Liu W, Zhang ZD (2010) Carbon 48:891CrossRefGoogle Scholar
  32. 32.
    Zhang XF, Guan PF, Dong XL (2010) Appl Phys Lett 96:223111CrossRefGoogle Scholar
  33. 33.
    Taylor RA, Phelan PE, Otanicar TP, Adrian R, Prasher R (2011) Nanoscale Res Lett 6:225CrossRefGoogle Scholar
  34. 34.
    Otanicar TP, Phelan PE, Prasher RS, Rosengarten G, Taylor RA (2010) J Renew Sustain Ener 2:033102CrossRefGoogle Scholar
  35. 35.
    Al-Ghamdi AA, El-Tantawy F, Aal NA, El-Mossalamy EH, Mahmoud WE (2009) Polym Degrad Stab 94:980CrossRefGoogle Scholar
  36. 36.
    Sepehri Javan N, Rouhi Erdi F, Najafi MN (2017) Phys Plasmas 24:052301CrossRefGoogle Scholar
  37. 37.
    Sepehri Javan N, Rouhi Erdi F (2017) J Appl Phys 122:223103CrossRefGoogle Scholar
  38. 38.
    Ruppin R (2000) Opt Commun 182:273CrossRefGoogle Scholar
  39. 39.
    Taft EA, Philipp HR (1965) Phys Rev A 138(1):197CrossRefGoogle Scholar
  40. 40.
    Johnson LG, Dresselhaus G (1973) Phys Rev B 7:2275CrossRefGoogle Scholar
  41. 41.
    Spanier JE, Herman IP (2000) Phys Rev B 61:10437CrossRefGoogle Scholar
  42. 42.
    Golovan LA, Timoshenko VY, Kashkarov PK (2007) Phys Uspekhi 50:595CrossRefGoogle Scholar
  43. 43.
    Shalaev VM (2002) Optical properties of nanostructured random media, Top Appl Phys, Volume 82. Springer-Verlag, HeidelbergCrossRefGoogle Scholar
  44. 44.
    Reitz JR, Milford FJ, Christy RW (1993) Foundations of electromagnetic theory, 4th edn. Addison-Wesley, ReadingGoogle Scholar
  45. 45.
    Chen G, Wang H, Zhao W (2008) Polym Adv Technol 19:1113CrossRefGoogle Scholar
  46. 46.
    Monti M, Natali M, Torre L, Kenny JM (2012) Carbon 50:2453CrossRefGoogle Scholar
  47. 47.
    Oliva-Aviles AI, Aviles F, Sosa V, Seidel GD (2014) Carbon 69:342CrossRefGoogle Scholar
  48. 48.
    Kratz R, Wyder P (2002) Principles of pulsed magnet design. Springer-Verlag Berlin Heidelberg, New YorkCrossRefGoogle Scholar
  49. 49.
    Bruce Montgomery D (2006) J Appl Physiol 36:893CrossRefGoogle Scholar
  50. 50.
    Liseykina TV, Popruzhenko SV, Macchi A (2016) New J Phys 18:072001CrossRefGoogle Scholar
  51. 51.
    Ali S, Davies JR, Mendonca JT (2010) Phys Rev Lett 105:035001CrossRefGoogle Scholar
  52. 52.
    Bassani F, Parravicinin GP (1967) Nuovo Cimento 50B:95CrossRefGoogle Scholar
  53. 53.
    Painter GS, Ellis DE (1970) Phys Rev B 1:4747CrossRefGoogle Scholar
  54. 54.
    Klucker R, Skibowski M, Steinmann W (1974) Phys Status Solidi B 66:703CrossRefGoogle Scholar
  55. 55.
    Quinten M (2011) Optical properties of nanoparticle systems: mie and beyond. Wiley-VCH Verlag & Co. KGaA, WeinheimCrossRefGoogle Scholar
  56. 56.
    Ashcroft NW, Sturm K (1971) Phys Rev B 3:1898CrossRefGoogle Scholar
  57. 57.
    Sturm K, Ashcroft NW (1974) Phys Rev B 10:1343CrossRefGoogle Scholar
  58. 58.
    Yamashita S, Saito Y, Choi JH (2013) Carbon nanotubes and graphene for photonic applications. Woodhead publishing series in electronic and optical materials: number 47, CambridgeCrossRefGoogle Scholar
  59. 59.
    Kitamura R, Pilon L, Jonasz M (2007) Appl Opt 46:8118CrossRefGoogle Scholar
  60. 60.
    Philipp HR, Taft EA (1960) Phys Rev 120:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Mohaghegh ArdabiliArdabilIran

Personalised recommendations