Advertisement

Plasmonics

, Volume 14, Issue 1, pp 187–195 | Cite as

A Waveguide-Coupled Surface Plasmon Resonance Sensor Using an Au-MgF2-Au Structure

  • Pengfei ZhangEmail author
  • Le Liu
  • Yonghong He
  • Xiaoxia Chen
  • Kaijie Ma
  • Dong Wei
Article
  • 133 Downloads

Abstract

We describe an Au-MgF2-Au trilayered waveguide-coupled surface plasmon resonance (WCSPR) sensor in this article. The characteristics of this sensing structure are compared with those of the conventional single-layered gold surface plasmon resonance (SPR) sensor theoretically and experimentally. The experiment results show that WCSPR can provide not only seven times smaller refractive index resolution in the bulk sensing application but also more accurate measurement results for the biomolecular interaction analysis than the conventional single-layered gold SPR. What’s more, this high-resolution sensor is easy to build and not sensitive to film thickness variations. The Au-MgF2-Au trilayered WCSPR may provide a simple and convenient chip-based strategy for performance enhancement of SPR sensors without varying the hardware and software of measurement instruments.

Keywords

Surface plasmon resonance Waveguide-coupled surface plasmon resonance Residual analysis Biomolecular interaction analysis 

Notes

Funding Information

This research was made possible with the financial support from NSFC China (61275188, 61361160416), Science and Technology Research Program of Shenzhen City (JSGG20150331151536448, CXZZ20140416160720723), and National Key Scientific Instrument and Equipment Development Project (2013YQ040911).

References

  1. 1.
    Homola J (2006) Surface plasmon resonance based sensors. Springer Berlin Heidelberg, New YorkCrossRefGoogle Scholar
  2. 2.
    Shan XN, Patel U, Wang SP, Iglesias R, Tao NJ (2010) Imaging local electrochemical current via surface plasmon resonance. Science 327:1363–1366CrossRefGoogle Scholar
  3. 3.
    Wong CL, Olivo M (2014) Surface plasmon resonance imaging sensors: a review. Plasmonics 9:809–824CrossRefGoogle Scholar
  4. 4.
    Cooper MA (2009) Label-free biosensors: techniques and applications. Cambridge University Press, New YorkCrossRefGoogle Scholar
  5. 5.
    Zijlstra P, Paulo PMR, Orrit M (2012) Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nanotechnol 7:379–382CrossRefGoogle Scholar
  6. 6.
    Chong XY, Liu L, Liu ZY, Ma SH, Guo J, Ji YH, He YH (2013) Detect the hybridization of single-stranded DNA by parallel scan spectral surface plasmon resonance imaging. Plasmonics 8:1185–1191CrossRefGoogle Scholar
  7. 7.
    Zhang PF, Liu L, He YH, Ji YH, Guo J, Ma H (2016) Temperature-regulated surface plasmon resonance imaging system for bioaffinity sensing. Plasmonics 11:771–779CrossRefGoogle Scholar
  8. 8.
    Hinman SS, McKeating KS, Cheng Q (2018) Surface plasmon resonance: material and interface design for universal accessibility. Anal Chem 90:19–39CrossRefGoogle Scholar
  9. 9.
    Liu L, Chen XL, Liu ZY, Ma SH, Du C, He YH, Guo JH (2012) Polarization interference interrogation of angular surface plasmon resonance sensors with wide metal film thickness tolerance. Sensors Actuators B Chem 173:218–224CrossRefGoogle Scholar
  10. 10.
    Liu L, Guo J, He YH, Zhang PF, Zhang YL, Guo JH (2015) Study on the despeckle methods in angular surface plasmon resonance imaging sensors. Plasmonics 10:729–737CrossRefGoogle Scholar
  11. 11.
    Chen ZL, Liu L, He YH, Ma H (2016) Resolution enhancement of surface plasmon resonance sensors with spectral interrogation: resonant wavelength considerations. Appl Opt 55:884–891CrossRefGoogle Scholar
  12. 12.
    Luo L, Qiu XD, Xie LG, Liu X, Li ZX, Zhang ZY, Du JL (2017) Precision improvement of surface plasmon resonance sensors based on weak-value amplification. Opt Express 25:21107–21114CrossRefGoogle Scholar
  13. 13.
    Wu B, Jiang R, Wang Q, Huang J, Yang XH, Wang KM, Li WS, Chen ND, Li Q (2016) Detection of C-reactive protein using nanoparticle-enhanced surface plasmon resonance using an aptamer-antibody sandwich assay. Chem Commun 52:3568–3571CrossRefGoogle Scholar
  14. 14.
    Liu CJ, Hu FC, Yang W, Xu JY, Chen Y (2017) A critical review of advances in surface plasmon resonance imaging sensitivity. Trac-Trend Anal Chem 97:354–362CrossRefGoogle Scholar
  15. 15.
    Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871CrossRefGoogle Scholar
  16. 16.
    Chang CC, Chiu NF, Lin DS, Yu CS, Liang YH, Lin CW (2010) High-sensitivity detection of carbohydrate antigen 15-3 using a gold/zinc oxide thin film surface plasmon resonance-based biosensor. Anal Chem 82:1207–1212CrossRefGoogle Scholar
  17. 17.
    Wang ZY, Cheng ZQ, Singh V, Zheng Z, Wang YM, Li SP, Song LS, Zhu JS (2014) Stable and sensitive silver surface plasmon resonance imaging sensor using trilayered metallic structures. Anal Chem 86:1430–1436CrossRefGoogle Scholar
  18. 18.
    Yang CT, Mejard R, Griesser HJ, Bagnaninchi PO, Thierry B (2015) Cellular micromotion monitored by long-range surface plasmon resonance with optical fluctuation analysis. Anal Chem 87:1456–1461CrossRefGoogle Scholar
  19. 19.
    Isaacs S, Abdulhalim I (2015) Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach. Appl Phys Lett 106:193071Google Scholar
  20. 20.
    Kenakin TP (2009) Cellular assays as portals to seven-transmembrane receptor-based drug discovery. Nat Rev Drug Discov 8:617–626CrossRefGoogle Scholar
  21. 21.
    Shi H, Liu ZY, Wang XX, Guo J, Liu L, Luo L, Guo JH, Ma H, Sun SQ, He YH (2013) A symmetrical optical waveguide based surface plasmon resonance biosensing system. Sensors Actuators B Chem 185:91–96CrossRefGoogle Scholar
  22. 22.
    Zhang PF, Liu L, He YH, Shen ZY, Guo J, Ji YH, Ma H (2014) Non-scan and real-time multichannel angular surface plasmon resonance imaging method. Appl Opt 53:6037–6042CrossRefGoogle Scholar
  23. 23.
    Lin H, Wang LP, Dong JX, Xu XY, Liu L, Zhang L, Huang Q, Zhang XH, Liu QQ (2015) Study on trace sample of chronic skin ulcer with a symmetrical optical waveguide-based surface plasmon resonance biosensor. Plasmonics 10:1631–1637CrossRefGoogle Scholar
  24. 24.
    Zhang PF, Liu L, He YH, Zhou YF, Ji YH, Ma H (2015) Noninvasive and real-time plasmon waveguide resonance thermometry. Sensors 15:8481–8498CrossRefGoogle Scholar
  25. 25.
    Wang GQ, Wang CJ, Sun SQ (2018) An optical waveguide sensor based on mesoporous silica films with a comparison to surface plasmon resonance sensors. Sensors Actuators B Chem 255:3400–3408CrossRefGoogle Scholar
  26. 26.
    Ma TF, Chen YP, Guo JS, Wang W (2018) Cellular analysis and detection using surface plasmon resonance imaging. Trac-Trend Anal Chem 103:102–109CrossRefGoogle Scholar
  27. 27.
    Grotewohl H, Hake B, Deutsch M (2016) Intensity and phase sensitivities in metal/dielectric thin film systems exhibiting the coupling of surface plasmon and waveguide modes. Appl Opt 55:8564–8570CrossRefGoogle Scholar
  28. 28.
    Song LS, Wang ZY, Zhou DS, Nand A, Li SP, Guo BH, Wang YM, Cheng ZQ, Zhou WF, Zheng Z, Zhu JS (2013) Waveguide coupled surface plasmon resonance imaging measurement and high-throughput analysis of bio-interaction. Sensors Actuators B Chem 181:652–660CrossRefGoogle Scholar
  29. 29.
    Ahn JH, Seong TY, Kim WM, Lee TS, Kim IH, Lee KS (2012) Fiber-optic waveguide coupled surface plasmon resonance sensor. Opt Express 20:21729–21738CrossRefGoogle Scholar
  30. 30.
    Hayashi S, Nesterenko DV, Sekkat Z (2015) Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing. J Phys D Appl Phys 48:325303CrossRefGoogle Scholar
  31. 31.
    Yang L, Wang JC, Yang LZ, Hu ZD, Wu XJ, Zheng GG (2018) Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory. Sci Rep-UK 8:2560CrossRefGoogle Scholar
  32. 32.
    Bera M, Ray M (2014) Angular piecewise modal analysis for waveguide-coupled surface plasmon resonance structure. J Lightwave Technol 32:3199–3205CrossRefGoogle Scholar
  33. 33.
    Lee YK, Lee KS, Kim WM, Sohn YS (2014) Detection of amyloid-b42 using a waveguide-coupled bimetallic surface plasmon resonance sensor chip in the intensity measurement mode. PLoS One 9:e98992CrossRefGoogle Scholar
  34. 34.
    Lee HS, Seong TY, Kim WM, Kim I, Hwang GW, Lee WS, Lee KS (2018) Enhanced resolution of a surface plasmon resonance sensor detecting C-reactive protein via a bimetallic waveguide-coupled mode approach. Sensors Actuators B Chem 266:311-317Google Scholar
  35. 35.
    Hsu SH, Lin JH, Tsai DZ, Tsai HS, Jian ZH, Liu HF (2016) MicroRNA biosensing using telecommunication wavelength-interrogated waveguide-coupled surface plasmon resonance. IEEE Sensors J 16:2890–2891CrossRefGoogle Scholar
  36. 36.
    Twari K, Sharma SC, Hozhabri N (2016) Hafnium dioxide as a dielectric for highly-sensitive waveguide-coupled surface plasmon resonance sensors. AIP Adv 6:045217CrossRefGoogle Scholar
  37. 37.
    Zhou YF, Zhang PF, He YH, Xu ZH, Liu L, Ji YH, Ma H (2014) Plasmon waveguide resonance sensor using an Au-MgF2 structure. Appl Opt 53:6344–6350CrossRefGoogle Scholar
  38. 38.
    Bahrami F, Maisonneuve M, Meunier M, Aitchison JS, Mojahedi M (2014) Self-referenced spectroscopy using plasmon waveguide resonance biosensor. Biomed Opt Express 5:2481–2487CrossRefGoogle Scholar
  39. 39.
    Zhang PF, Liu L, He YH, Ji YH, Ma H (2015) Self-referenced plasmon waveguide resonance sensor using different waveguide modes. J Sens 2015:945908Google Scholar
  40. 40.
    Zhang PF, Liu L, He YH, Xu ZH, Ji YH, Ma H (2015) One-dimensional angular surface plasmon resonance imaging based array thermometer. Sensors Actuators B Chem 207:254–261CrossRefGoogle Scholar
  41. 41.
    Abbas A, Linman MJ, Cheng Q (2011) Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors. Sensors Actuators B Chem 156:169–175CrossRefGoogle Scholar
  42. 42.
    Piliarik M, Homola J (2009) Surface plasmon resonance (SPR) sensors: approaching their limits? Opt Express 17:16505–16517CrossRefGoogle Scholar
  43. 43.
    Sharma AK (2018) Simulation and analysis of Au-MgF2 structure in plasmonic sensor in near infrared spectral region. Opt Laser Technol 101:491–498CrossRefGoogle Scholar
  44. 44.
    Zhang PF, Liu L, He YH, Chen XX, Ma KJ, Wei D, Wang H, Shao Q (2018) Composite layer based plasmon waveguide resonance for label-free biosensing with high figure of merit. Sensors Actuators B Chem 272:69–78CrossRefGoogle Scholar
  45. 45.
    Pandey AK, Sharma AK, Basu R (2017) Fluoride glass-based surface plasmon resonance sensor in infrared region: performance evaluation. J Phys D Appl Phys 50:185103CrossRefGoogle Scholar
  46. 46.
    Sharma AK, Dominic A (2018) Fluoride fiber-optic SPR sensor with graphene and NaF layers: analysis of accuracy, sensitivity, and specificity in near infrared. IEEE Sensors J 18:4053–4058CrossRefGoogle Scholar
  47. 47.
    Sharma AK, Mohr GJ (2016) Plasmonic optical sensor for determination of refractive index of human skin tissues. Sensors Actuators B Chem 226:312–317CrossRefGoogle Scholar
  48. 48.
    Abutoama M, Li SZ, Abdulhalim I (2017) Widening the spectral range of ultrahigh field enhancement by efficient coupling of localized to extended plasmons and cavity resonances in grating geometry. J Phys Chem C 121:27612–27623CrossRefGoogle Scholar
  49. 49.
    Baaske MD, Foreman MR, Vollmer F (2014) Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat Nanotechnol 9:933–939CrossRefGoogle Scholar
  50. 50.
    Kim E, Baaske MD, Vollmer F (2016) In situ observation of single-molecule surface reactions from low to high affinities. Adv Mater 28:9941–9948CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing Scientific Instrument Research and Development CenterChinese Academy of SciencesBeijingChina
  2. 2.Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and SensingGraduate School at Shenzhen, Tsinghua UniversityShenzhenChina
  3. 3.Institute of Green Chemistry and EnergyGraduate School at Shenzhen, Tsinghua UniversityShenzhenChina
  4. 4.Department of OphthalmologyXin Hua Hospital Affiliated to Shanghai JiaoTong University School of MedicineShanghaiChina
  5. 5.Department of PhysicsTsinghua UniversityBeijingChina

Personalised recommendations