Advertisement

Plasmonics

, Volume 14, Issue 1, pp 165–171 | Cite as

A Switchable Metalens Based on Active Tri-Layer Metasurface

  • Ru Ji
  • Yanan Hua
  • Kejian ChenEmail author
  • Kaiwen Long
  • Yanjun Fu
  • Xiaofan Zhang
  • Songlin Zhuang
Article
  • 375 Downloads

Abstract

Metasurfaces, which are composed of two-dimensional arrays of subwavelength structures, can reshape the wavefront arbitrarily by introducing phase discontinuities with the entire 2π phase region. In this paper, we demonstrate a switchable metalens based on active tri-layer metasurfaces by hybridizing a phase-change material, vanadium dioxide (VO2). The reflection and transmission coefficients of the metasurface element and the focusing performance of the switchable metalens were studied and simulated. At room temperature (300 K), VO2 behaves as a semiconductor and our proposed metalens can reflect and converge the co-polarized terahertz wave with high efficiency, working as a reflective lens. When the temperature is up to around 400 K, the VO2 material is switched into metal phase and the proposed metalens is switched into its operating state as a transmission mode for the cross-polarized terahertz wave. By thermal stimulation or electrical bias, the switchable meta-devices proposed in this paper can be applied in the fields for imaging, communication, and power modulation.

Keywords

Active metasurface Vanadium dioxide Phase shift Switchable metalens 

Notes

Funding Information

This paper is funded by the National Natural Science Foundation of China (No. 61205095), the Shanghai Young College Teacher Develop funding schemes (No. slg11006.)

References

  1. 1.
    Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, Gaburro Z (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054):333–337CrossRefGoogle Scholar
  2. 2.
    Liu LX, Zhang XQ, Kenney M, Su XQ, Xu NN, Ouyang CM, Shi YL, Han JG, Zhang WL, Zhang S (2014) Broadband metasurfaces with simultaneous control of phase and amplitude. Adv Mater 26:5031–5036CrossRefGoogle Scholar
  3. 3.
    Grady NK, Heyes JE, Chowdhury DR, Zeng Y, Reiten MT, Azad AK, Chen HT (2013) Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340(6138):1304–1307CrossRefGoogle Scholar
  4. 4.
    Chen M, Sun W, Cai JJ, Chang LZ, Xiao XF (2017) Frequency-tunable mid-infrared cross polarization converters based on graphene metasurface. Plasmonics 12(3):699–705CrossRefGoogle Scholar
  5. 5.
    Cong L, Cao W, Zhang XQ, Tian Z, Gu JQ, Singh AJ, Han JG, li W (2013) A perfect metamaterial polarization rotator. Appl Phys Lett 103(17):17039CrossRefGoogle Scholar
  6. 6.
    Yu N, Aieta F, Genevet P, Kats MA, Gaburro Z, Capasso F (2012) A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 12:6328–6333CrossRefGoogle Scholar
  7. 7.
    Aieta F, Genevet P, Kats MA, Yu N, Blanchard R, Gaburro Z, Capasso F (2012) Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 12(9):4932–4936CrossRefGoogle Scholar
  8. 8.
    Li X, Xiao SY, Cai BG, He Q, Cui TJ, Zhou L (2012) Flat metasurfaces to focus electromagnetic waves in reflection geometry. Opt Lett 37(23):4940–4942CrossRefGoogle Scholar
  9. 9.
    Wang Q, Zhang XQ, Xu YH, Tian Z, Go JQ, Yue WS, Zhang S, Han JG, Zhang WL (2015) A broadband metasurface-based terahertz flat-lens array. Adv Opt Mater 3(6):779–785CrossRefGoogle Scholar
  10. 10.
    Chang CC, Headland D, Abbott D, Withayachumnankul W, Chen HT (2017) Demonstration of a highly efficient terahertz flat lens employing tri-layer metasurfaces. Opt Lett 42(9):1867–1870CrossRefGoogle Scholar
  11. 11.
    Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K, Qiu C, Li J, Zentgraf T, Zhang S (2013) Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 4:2808CrossRefGoogle Scholar
  12. 12.
    Chen WT, Yang KY, Wang CM, Wang HYW, Sun G, Chiang ID, Liao CY, Hsu LW, Lin HT, Sun S (2014) High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 14:225–230CrossRefGoogle Scholar
  13. 13.
    Yan X, Liang LJ, Yang J, Liu WW, Ding X, Xu DG, Zhang YT, Cui TJ, Yao JQ (2015) Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface. Opt Express 23:29128–29137CrossRefGoogle Scholar
  14. 14.
    Gutruf P, Zou C, Withayachumnankul W, Bhaskaran M, Sriram S, Fumeaux C (2015) Mechanically tunable dielectric resonator metasurfaces at visible frequencies. ACS Nano 10(1):133CrossRefGoogle Scholar
  15. 15.
    Ma F, Lin YS, Zhang XH, Lee C (2014) Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array. Light Sci Appl 3(5):e171CrossRefGoogle Scholar
  16. 16.
    Bu T, Chen KJ, Liu H, Liu JJ, Hong Z, Zhuang SL (2016) Location-dependent metamaterials in terahertz range for reconfiguration purposes. Photon Res 4:122CrossRefGoogle Scholar
  17. 17.
    Rahmani M, Xu L, Miroshnichenko AE, Komar A, Camacho-Morales R, Chen H, Zárate Y, Kruk S, Zhang GQ, Neshev DN (2017) Reversible thermal tuning of all-dielectric metasurfaces. Adv Funct Mater 27(31):1700580CrossRefGoogle Scholar
  18. 18.
    Jeong YG, Bernien H, Kyoung JS, Park HR, Kim HS, Cho JW, Kim BJ, Kim HT, Ahn KJ, Kim DS (2011) Electrical control of terahertz nano antennas on VO2 thin film. Opt Express 19:21211–21215CrossRefGoogle Scholar
  19. 19.
    Gu JQ, Singh R, Liu XJ, Zhang XQ, Ma YF, Zhang S, Maier SA, Tian Z, Azad AK, Chen HT, Taylor AJ, Han JG, Zhang WL (2012) Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun 3(4):1151CrossRefGoogle Scholar
  20. 20.
    Wang DC, Zhang LC, Gu YH, Mehmood MQ, Gong YD, Srivastava A, Jian L, Venkatesan T, Qiu CW, Hong MH (2015) Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface. Sci Rep 5:15020CrossRefGoogle Scholar
  21. 21.
    Liu MK, Hwang HY, Tao H, Strikwerda AC, Fan KB, Keiser GR, Sternbach AJ, West KG, Kittiwatanakul S, Lu JW (2012) Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487:345–348CrossRefGoogle Scholar
  22. 22.
    Wang D, Zhang L, Gong Y, Jian L, Venkatesan T, Qiu CW, Hong M (2016) Multiband switchable terahertz quarter-wave plates via phase-change metasurfaces. IEEE Photonics J 8:1–8Google Scholar
  23. 23.
    Ferraro A, Dimitrios C, Zografopoulos RC, Beccherelli R (2017) Broad- and narrow-line terahertz filtering in frequency-selective surfaces patterned on thin low-loss polymer substrates. IEEE J Sel Top Quantum Electron 23:1–8CrossRefGoogle Scholar
  24. 24.
    Tang Q, Liang M, Lu Y, Wong PK, Wilmink GJ, Zhang DD, Xin H (2016) Microfluidic devices for terahertz spectroscopy of live cells toward lab-on-a-chip applications. Sensors 16:476CrossRefGoogle Scholar
  25. 25.
    Hu F, Wang L, Quan B, Xu X, Li Z, Wu Z, Pan Z (2013) Design of a polarization insensitive multiband terahertz metamaterial absorber. J Phys D Appl Phys 46:195103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ru Ji
    • 1
  • Yanan Hua
    • 1
  • Kejian Chen
    • 1
    Email author
  • Kaiwen Long
    • 1
  • Yanjun Fu
    • 1
  • Xiaofan Zhang
    • 1
  • Songlin Zhuang
    • 1
  1. 1.Shanghai Key Lab of Modern Optical System, Engineering Research Center of Optical Instrument and System, Ministry of EducationUniversity of Shanghai for Science and TechnologyShanghaiChina

Personalised recommendations