Advertisement

Plasmonics

pp 1–17 | Cite as

Modeling of Electrically Triggered Tunable Magnetic Metamaterial Hat for Multifunctional Control in MRI Applications

  • Hassan Ali
Article
  • 41 Downloads

Abstract

Acquisition of images without surgical interposition into human body was possible due to magnetic resonance imaging (MRI) mechanism. We introduced noteworthy properties of specific combination of copper surface coils as tunable hybridized magnetic metamaterial hat (THMMH). In THMMH, some of the surface coil slots were loaded with capacitor elements and parallel merger of discrete edge ports as externally applied sinusoidal steady-state current source (IS). We highlighted the significance of IS, as it could make the design tunable and reconfigurable without any requirement of it being re-designed/re-fabricated. Efficiency comparison between THMMH and previously reported work (un-tunable hybridized magnetic metamaterial hat, HMMH) was analyzed. We concluded that THMMH exhibited better magnetic field (B-field) and SNR into region of interest (ROI) at the rat’s brain, as well as shown strong resonance in comparison to previously reported work on the rat’s brain imaging for 7-T MRI. In addition, THMMH excited two eigenmodes simultaneously, which exploited its properties as hybridized magnetic material. Furthermore, relative negative permeability, μr = − 3.5+j20.2 for THMMH as case I and μr = − 5.5+j36.3 for un-tunable HMMH as case II were achieved at 300 MHz for 7-T MRI and for comparison purpose.

Keywords

Hybrid materials Magnetic negative permeability materials THMMH 

Notes

Funding Information

The author is grateful for the partial supports from NSFC 61271085 (National Natural Science Foundation of China).

References

  1. 1.
    Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191CrossRefGoogle Scholar
  2. 2.
    Hendee WR (1999) Physics and applications of medical imaging. Rev Mod Phys 71:S444–S450CrossRefGoogle Scholar
  3. 3.
    Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature (London) 453:869–878CrossRefGoogle Scholar
  4. 4.
    Ma D, Gulani V, Seiberlich N, Liu K, Sunshine J, Duerk J, Griswold M (2013) Magnetic resonance fingerprinting. Nature 495:187–192CrossRefGoogle Scholar
  5. 5.
    Degen CL, Poggio M, Mamin HJ, Rettner CT, Rugar D (2009) Nanoscale magnetic resonance imaging. PNAS 106:1313–1317CrossRefGoogle Scholar
  6. 6.
    Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design (vol 82). Wiley-liss, New YorkGoogle Scholar
  7. 7.
    Vaughan T, DelaBarre L, Snyder C, Tian J, Akgun C, Shrivastava D, Anderson P (2006) 9.4 T human MRI: preliminary results. Magn Reson Med 56:1274–1282CrossRefGoogle Scholar
  8. 8.
    Jouvaud C, Abdeddaim R, Larrat B, de Rosny J (2016) Volume coil based on hybridized resonators for magnetic resonance imaging. Appl Phys Lett 108:023503CrossRefGoogle Scholar
  9. 9.
    Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603CrossRefGoogle Scholar
  10. 10.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) Coil sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefGoogle Scholar
  11. 11.
    Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn Reson Med 16:192–225CrossRefGoogle Scholar
  12. 12.
    Brunner D, De Zanchei N, Frohlich J, Paska J, Pruessmann K (2009) Travelling-wave nuclear magnetic resonance. Nature 457:994–998CrossRefGoogle Scholar
  13. 13.
    Ali H, Jun H, Abbas A, Tariq M et al (2017) −μ compact magnetic metamaterial lens for 0.35-T MRI. J Opt 46:436–445CrossRefGoogle Scholar
  14. 14.
    Kuperman V (2000) Magnetic resonance imaging. Physical Principles and Applications. Academic Press, San DiegoGoogle Scholar
  15. 15.
    Hogemann D, Josephson L, Weissleder R, Basilion JP (2000) Improvement of MRI probes to allow efficient detection of gene expression. Bioconjug Chem 11:941–946CrossRefGoogle Scholar
  16. 16.
    Stafford RJ (2005) TU-B-I-617-01: high field MRI—technology, applications, safety, and limitations. Med Phys 32(6):2077–2077CrossRefGoogle Scholar
  17. 17.
    Solis SE, Wang R, Tomasi D, Rodriguez AO (2011) A multi-slot surface coil for MRI of dual-rat imaging at 4 T. Phys Med Biol 56:3551–3561CrossRefGoogle Scholar
  18. 18.
    Hayes CE, Edelstein WA, Schenck JF, Mueller OM, Eash M (1985) An efficient, highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 T. J Magn Res 63:622–628Google Scholar
  19. 19.
    Katscher U, ornert PB€ (2006) Parallel RF transmission in MRI. NMR Biomed 19:393–400CrossRefGoogle Scholar
  20. 20.
    Belov P, Zhao Y, Sudhakaran S, Alomainy A, Hao Y (2006) Experimental study of the sub-wavelength imaging by a wire medium slab. Appl Phys Lett 89:262109CrossRefGoogle Scholar
  21. 21.
    Pendry JB (2000) Negative refraction makes perfect lens. Phys Rev Lett 85:3966–3969CrossRefGoogle Scholar
  22. 22.
    Smith DR, Pendry JB, Wiltshire MCK (2004) Metamaterials and negative refractive index. Science 305:794–799CrossRefGoogle Scholar
  23. 23.
    Baena JD, Jelinek L, Marques R, Silveirinha M (2008) Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials. Phys Rev A 78:013842CrossRefGoogle Scholar
  24. 24.
    Engheta N, Ziolkowski RW (eds.) (2006) Metamaterials: physics and engineering explorations. John Wiley & Sons, HobokenGoogle Scholar
  25. 25.
    Cai W, Shalaev V (2010) Optical metamaterials: fundamentals and applications. Springer, New YorkCrossRefGoogle Scholar
  26. 26.
    Freire M, Marqués R, Jelinek L (2008) Experimental demonstration of a μ=− 1 metamaterial lens for magnetic resonance imaging. Appl Phys Lett 93:231108CrossRefGoogle Scholar
  27. 27.
    Marques R, Mesa F, Martel J, Medina F (2003) Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design-theory and experiments. IEEE Trans Antennas Propag 51:2572–2581CrossRefGoogle Scholar
  28. 28.
    Ali H, Forsberg E, Jun H (2016) Sub-wavelength imaging with BC-SRRs metamaterial lens for 1.5-T MRI. Appl Magn Reson 47:539–554CrossRefGoogle Scholar
  29. 29.
    syms RRA, Floume T, Young I, Solymar L, Rea M (2010) Flexible magnetoinductive ring MRI detector: design for invariant nearest-neighbour coupling. Meta 4:1–14Google Scholar
  30. 30.
    Radu X, Garray D, Craeye C (2009) Toward a wire medium endoscope for MRI imaging. Meta 3:90–99Google Scholar
  31. 31.
    Ali H, Forsberg E, Jun H (2017) Brain imaging with slotted hybridized magnetic metamaterial hat at 7-T MRI. Appl Magn Reson 48(1):67–83Google Scholar
  32. 32.
    Liu L, Kang L, Mayer TS, Werner DH (2016) Hybrid metamaterials for electrically triggered multifunctional control. Nature Comm 7:13236Google Scholar
  33. 33.
    Zheludev NI, Plum E (2016) Reconfigurable nanomechanical photonic metamaterials. Nature Nano Tech 11:16–22CrossRefGoogle Scholar
  34. 34.
    Babic S, Akyel C (2008) Magnetic force calculation between thin coaxial circular coils in air. Mag IEEE Trans 44:445–452CrossRefGoogle Scholar
  35. 35.
    Brillouin L (1960) Wave propagation and group velocity. Academic press, New York and LondonGoogle Scholar
  36. 36.
  37. 37.
    Aprille JT, Timothy NT (1972) Steady-state analysis of nonlinear circuits with periodic inputs. Proc IEEE 60(1):108–114CrossRefGoogle Scholar
  38. 38.
    Podolskiy VA, Kuhta NA, Milton WG (2005) Optimizing the superlens: manipulating geometry to enhance the resolution. Appl Phys Lett 87:231113CrossRefGoogle Scholar
  39. 39.
    Sievenpiper DF, Sickmiller ME, Yablonovitch E (1996) 3D wire mesh photonic crystals. Phys Rev Lett 76:2480–2483CrossRefGoogle Scholar
  40. 40.
    Marqués R, Martín F, Sorolla M (2008) Metamaterials with negative parameters: theory and microwave applications. Wiley & Sons Inc., HobokenGoogle Scholar
  41. 41.
    Abdeddaim R, Ourir A, de Rosny J (2011) Realizing a negative index metamaterial by controlling hybridization of trapped modes. Phys Rev B 83:033101CrossRefGoogle Scholar
  42. 42.
    Syms RRA, Solymar L, Young IR (2008) Three-frequency parametric amplification in magneto-inductive ring resonators. Meta 2:122–134Google Scholar
  43. 43.
    Sydoruk O, Shamonina E, Solymar L (2007) Parametric amplification in coupled magnetoinductive waveguides. J Phys D Appl Phys 40:6879–6887CrossRefGoogle Scholar
  44. 44.
    Hadjicosti K, Sydoruk O, Maier SA, Shamonina E (2015) Surface polaritons in magnetic metamaterials from perspective of effective-medium and circuit models. J Appl Phys 16:163910CrossRefGoogle Scholar
  45. 45.
    Valkenburg V (1958) Network analysis. Prentice-Hall, LondonGoogle Scholar
  46. 46.
    Lapine M, Jelinek L, Marqués R, Freire M (2010) Exact modelling method for discrete finite metamaterial lens. IET Microw Antennas Propag 4:1132–1139CrossRefGoogle Scholar
  47. 47.
    Kim G, Lee B (2016) Synthesis of bulk medium with negative permeability using ring resonators. J Electro Magn Engg Sci 16(2):67–73CrossRefGoogle Scholar
  48. 48.
    Hall SH, Heck HL (2009) Advanced signal integrity for high-speed digital designs. Hoboken Wiley, New JerseyCrossRefGoogle Scholar
  49. 49.
    Balanis CA (2012) Advanced engineering electromagnetics, 2nd edn. Wiley, HobokenGoogle Scholar
  50. 50.
    Reed DG (2005) ARRL handbook for radio Communications, 82nd edn. American Radio Relay League, NewingtonGoogle Scholar
  51. 51.
    Thierauf SC (2004) High-speed circuit board signal integrity. Artech House, Norwood, MAGoogle Scholar
  52. 52.
    Wensong W, Chen Y, Yang S, Zheng X, Cao Q (2015) Design of a broadband electromagnetic wave absorber using a metamaterial technology. J Electromagn Waves and Appl 29:2080–2091CrossRefGoogle Scholar
  53. 53.
    Tan S, Yan F, Sing L, Cao W, Xu N, Hu X, Zhang W (2015) Terahertz metasurfaces with a high refractive index enhanced by the strong nearest neighbor coupling. Opt Express 23(22):29222–29230CrossRefGoogle Scholar
  54. 54.
    Chen XD, Grzegorczyk TM, Wu BI, Pacheco J Jr, Kong JA (2004) Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E 70:016608CrossRefGoogle Scholar
  55. 55.
    Maslovski S, Tretyakov S, Alitalo P (2004) Near-field enhancement and imaging in double planar polariton-resonant structures. J Appl Phys 96:1293–1300CrossRefGoogle Scholar
  56. 56.
    Algarin JM, Lopez MA, Freire MJ, Marques R (2011) Signal-to-noise ratio evaluation in resonant ring metamaterial lenses for MRI applications. New J Phys 13:115006CrossRefGoogle Scholar
  57. 57.
    Hoult DI, Richards RE (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24:71–85Google Scholar
  58. 58.
    Ali H, Forsberg E, Jun H (2017) 0 μ magnetic polarizer for 1.5-T MRI. J Electr Electron Syst 6:242CrossRefGoogle Scholar
  59. 59.
    Edelstein WA, Glover GH, Hardy CJ, Redington RW (1986) The intrinsic signal-to-noise ratio in NMR. Reson Med 3:604–618CrossRefGoogle Scholar
  60. 60.
    Rosa FB, Grover FW (1948) Formulas and tables for calculation of mutual and self-inductance. Bureau of Standards. Government Printing Office, WashingtonGoogle Scholar
  61. 61.
    Landau LD, Lifschitz EM (1984) Electrodynamics of continuous media. Pergamon Press, OxfordGoogle Scholar
  62. 62.
    Nightingale NRV, Goodridge VD, Sheppard RJ, Christie JL (1983) The dielectric properties of the cerebellum, cerebrum and brain stem of mouse brain at radiowave and microwave frequencies. Phys Med Biol 28(8):897Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Lab of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Department of Optical EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations