, Volume 14, Issue 1, pp 33–39 | Cite as

Novel Ridge-Type Gold Film Waveguide for Surface Plasmon Polariton Laser

  • Jian Lou
  • Jun ZhuEmail author
  • Duqu WeiEmail author
  • Frank JiangEmail author


Surface plasmon polariton lasers are the basis for photonic circuits, but their losses, thresholds, and some other problems remain thorny issues. In this study, we put forward a novel ridge-type gold film surface plasmon polariton laser. The device adopts a multi-layer hybrid waveguide structure, where the bottom layer is a gold film, and a gold ridge is formed over the center of the gold film. We symmetrically place the two SiO2layers on both sides of the gold ridge as buffer layers and deposit a gold nanoribbon on the top of gold ridge. Two air gaps are formed between the gold ridge and SiO2buffer layers. We numerically study the structure, and the results show that at the operating wavelength of 1550 nm, the effective mode area reaches 1.375 × 10−5λ2 , and the confinement factor reaches 0.75. When the width of the SiO2layer is 2 nm, the height of the ridge is 10 nm, and the angle of the ridge is 80°, the waveguide can effectively enhance the light field confinement so as to limit the energy to a very small range and exhibits the minimum gain threshold. The waveguide can provide a solution for the optical source device of the surface plasma excitation circuits and has great application potential in the ultra-small and high-density optical chips.


Surface plasmon polariton laser Ridge-type waveguide Optical source 


Funding information

This work was supported by supported by the Guangxi Natural Science Foundation (2017GXNSFAA198261), the National Natural Science Foundation of China (Grant No. 61762018), the Guangxi Youth Talent Program (F-KA16016), the Innovation Project of Guangxi Graduate Education XJGY201807), the Guangxi Scholarship Fund of Guangxi Education Department, and the Youth Backbone Teacher Growth Support Plan of Guangxi Normal University (shi zheng personnel (2012) 136).


  1. 1.
    Dadoenkova YS, Moiseev SG, Abramov AS et al ( 2017) Surface plasmon polariton amplification in semiconductor–graphene–dielectric structure[J]. Annalen Der Physik 529(5):1700037Google Scholar
  2. 2.
    Hu ZJ, Tan PS, Zhu SW et al (2010) Structured light for focusing surface plasmon polaritons [J]. Opt Express 18(10):10864–10870CrossRefGoogle Scholar
  3. 3.
    Chen J, Sun C, Li H, Gong Q (2014) Ultra-broadband unidirectional launching of surface plasmon polaritons by a double-slit structure beyond the diffraction limit. [J]. Nanoscale 6(22):13487–13493CrossRefGoogle Scholar
  4. 4.
    Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons [J]. Phys Rep 408(3):131–314CrossRefGoogle Scholar
  5. 5.
    Ebbesen TW, Genet C, Bozhevolnyi SI (2008) Surface-plasmon circuitry [J]. Phys Today 61(5):44–50CrossRefGoogle Scholar
  6. 6.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. [J]. Nat Mater 9(3):205–213CrossRefGoogle Scholar
  7. 7.
    Shi S, Zhang Z, Du J et al (2012) Surface-plasmon-polaritons-assisted nanolithography with dual-wavelength illumination for high exposure depth [J]. Opt Lett 37(2):247–249CrossRefGoogle Scholar
  8. 8.
    Dong J, Liu J, Liu P, Liu J, Zhao X, Kang G, Xie J, Wang Y (2013) Surface plasmon interference lithography with a surface relief metal grating [J]. Opt Commun 288(5):122–126CrossRefGoogle Scholar
  9. 9.
    Ryan C, Christenson CW, Valle B et al (2012) Roll‐to‐Roll Fabrication of Multilayer Films for High Capacity Optical Data Storage. Adv Mater 24:5222–5226Google Scholar
  10. 10.
    Yu ZG, Zhao LX, Wei XC et al (2014) Surface plasmon-enhanced nanoporous GaN-based green light-emitting diodes with Al2O3 passivation layer.[J]. Opt Express 22(Suppl 6(21)):A1596CrossRefGoogle Scholar
  11. 11.
    Tian J, Yang R, Song L, Xue W (2014) Optical properties of a Y-splitter based on hybrid multilayer plasmonic waveguide [J]. IEEE J Quantum Electron 50(11):898–903CrossRefGoogle Scholar
  12. 12.
    Luo LB, Liang RS, Li TL et al (2014) Novel integrated demultiplexer with the Bragg grating structure based on surface plasmon polaritons[C]//Key Engineering Materials. Trans Tech Publications 609:1307–1312Google Scholar
  13. 13.
    Garcia-Blanco SM, Pollnau M, Bozhevolnyi SI (2012) Theoretical study of loss compensation in long-range dielectric loaded surface plasmon polariton waveguides [J]. Bel Studio 18(22):23009–23015Google Scholar
  14. 14.
    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit [J]. Nat Photonics 4(2):83–91CrossRefGoogle Scholar
  15. 15.
    Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nanowire nanolasers [J]. Science 292(5523):1897–1899CrossRefGoogle Scholar
  16. 16.
    Bergman DJ, Stockman MI (2003) Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems.[J]. Phys Rev Lett 90(2):027402CrossRefGoogle Scholar
  17. 17.
    Noginov MA, Zhu G, Belgrave AM et al (2009) Demonstration of a spaser-based nanolaser [J]. Nature 460(7259):1110–1112CrossRefGoogle Scholar
  18. 18.
    Smalbrugge B, Ning CZ, Geluk EJ et al (2009) Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides[J]. Opt Express 17(13):11107CrossRefGoogle Scholar
  19. 19.
    Nezhad MP, Simic A, Bondarenko O et al (2009) Room temperature operation of subwavelength metallo-dielectric lasers [J]. Nat Photonics 4(6):395–399CrossRefGoogle Scholar
  20. 20.
    Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation [J]. Nat Photonics 2(8):496–500CrossRefGoogle Scholar
  21. 21.
    Sun R, Dong P, Feng NN, Hong CY, Michel J, Lipson M, Kimerling L (2007) Horizontal single and multiple slot waveguides: optical transmission at lambda = 1550 nm [J]. Opt Express 15(26):17967CrossRefGoogle Scholar
  22. 22.
    Bian Y, Gong Q (2014) Multilayer metal–dielectric planar waveguides for subwavelength guiding of long-range hybrid plasmon polaritons at 1550 nm [J]. J Opt 16(1):100–103CrossRefGoogle Scholar
  23. 23.
    J M, Chen L, Li X et al (2013) Hybrid nano ridge plasmonic polaritons waveguides [J]. Appl Phys Lett 103(13):131107–131107CrossRefGoogle Scholar
  24. 24.
    Liu JT, Xu BZ, Zhang J, Cai LK, Song GF (2012) Gain assisted indented plasmonic waveguide for low-threshold nanolaser applications [J]. Chinese Physics B 21(10):107303CrossRefGoogle Scholar
  25. 25.
    Lv H, Liu Y, Yu Z et al (2014) Hybrid plasmonic waveguides for low-threshold nanolaser applications[J]. Chin Opt Lett 12(11):103–106Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Electronic EngineeringGuangxi Normal UniversityGuilinChina

Personalised recommendations