Advertisement

Plasmonics

, Volume 14, Issue 1, pp 17–24 | Cite as

Ultrafast Energy Transfer in the Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid Systems

  • Mariam TohariEmail author
  • Andreas Lyras
  • Mohamad Alsalhi
Article

Abstract

Hybrid nanocomposites can offer a wide range of opportunities to control the light-matter interaction and electromagnetic energy flow at the nanoscale, leading to exotic optoelectronic devices. We study theoretically the dipole-dipole interaction in noble metal nanoparticles-graphene nanodisks-quantum dots hybrid systems in the optical region of the electromagnetic spectrum. The quantum dot is assumed to be a three-level atom interacting with ultrashort control and probe pulses in a Λ configuration. The dynamics of the system are studied by numerically solving for the time evolution of the density matrix elements. We investigate the rate of energy exchange between surface plasmon resonances of the graphene nanodisks and excitons of the quantum dots in the presence of metal nanoparticles at steady state and for specific geometrical conditions of the system. Ultrafast population dynamics are obtained with a large energy exchange rate significantly depending on the size of metal nanoparticles. The power transfer can be controlled by varying the center-to-center distances between the components of the system, and their positions with respect to each other. We also find that the rate of energy transfer within the system is governed by the probe field Rabi frequency, enhanced by the dipole-dipole interaction.

Keywords

Graphene nanodisks Metal naoparticles Self-assembled quantum dots Energy exchange rate Density matrix elements 

Notes

Funding Information

This Project was supported by King Saud University, Deanship of Scientific Research, Research Chairs.

References

  1. 1.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442CrossRefGoogle Scholar
  2. 2.
    Rodrigo D, Limaj O, Janner D, Etezadi D, de Abajo FJG, Pruneri V, Altug H (2015) Mid-infrared plasmonic biosensing with graphene. Science 349(6244):165CrossRefGoogle Scholar
  3. 3.
    Zheludev NI (2011) A roadmap for metamaterials. Opt Photonics News 22(3):30CrossRefGoogle Scholar
  4. 4.
    Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331(6015):290CrossRefGoogle Scholar
  5. 5.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205CrossRefGoogle Scholar
  6. 6.
    Ni X, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM (2012) Broadband light bending with plasmonic nanoantennas. Science 335(6067):427CrossRefGoogle Scholar
  7. 7.
    Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130(5):1676CrossRefGoogle Scholar
  8. 8.
    Zhang X, Chen YL, Liu RS, Tsai DP (2013) Plasmonic photocatalysis. Rep Prog Phys 76(4):046401CrossRefGoogle Scholar
  9. 9.
    Gonzalez-Tudela A, Martin-Cano D, Moreno E, Martin-Moreno L, Tejedor C, Garcia-Vidal FJ (2011) Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys Rev Lett 106(2):020501CrossRefGoogle Scholar
  10. 10.
    Tame MS, McEnery K, Özdemir Ş, Lee J, Maier S, Kim M (2013) Quantum plasmonics. Nat Phys 9(6):329CrossRefGoogle Scholar
  11. 11.
    Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS nano 6(5):3677CrossRefGoogle Scholar
  12. 12.
    Jarrahi M (2015) Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators. IEEE Trans Terahertz Sci Technol 5(3):391CrossRefGoogle Scholar
  13. 13.
    Li Y, Argyropoulos C (2016) Controlling collective spontaneous emission with plasmonic waveguides. Opt Express 24(23):26696CrossRefGoogle Scholar
  14. 14.
    Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16(19):1685CrossRefGoogle Scholar
  15. 15.
    Chon JW, Iniewski K (2013) Nanoplasmonics: advanced device applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  16. 16.
    Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111(10):3806CrossRefGoogle Scholar
  17. 17.
    West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photonics Rev 4(6):795CrossRefGoogle Scholar
  18. 18.
    Sreeprasad TS, Pradeep T (2013) Noble metal nanoparticles. In: Springer Handbook of Nanomaterials, Springer, pp 303–388Google Scholar
  19. 19.
    Khurgin JB, Boltasseva A (2012) Reflecting upon the losses in plasmonics and metamaterials. MRS Bull 37(8):768CrossRefGoogle Scholar
  20. 20.
    Bolotin KI, Sikes K, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9):351CrossRefGoogle Scholar
  21. 21.
    Gonçalves PAD, Peres NM (2016) An introduction to graphene plasmonics. World Scientific, SingaporeCrossRefGoogle Scholar
  22. 22.
    Guo B, Fang L, Zhang B, Gong JR (2011) Graphene doping: a review. Insciences J 1(2):80CrossRefGoogle Scholar
  23. 23.
    Ezawa M (2008) Coulomb blockade in graphene nanodisks. Phys Rev B 77(15):155411CrossRefGoogle Scholar
  24. 24.
    MinovKoppensich F, Chang D, Thongrattanasiri S, de Abajo FG (2011) Graphene plasmonics: a platform for strong light-matter interactions. Opt Photonics News 22(12):36CrossRefGoogle Scholar
  25. 25.
    Manjavacas A, Nordlander P, García de Abajo FJ (2012) Plasmon blockade in nanostructured graphene. ACS nano 6(2):1724CrossRefGoogle Scholar
  26. 26.
    Rast L, Sullivan T, Tewary VK (2013) Stratified graphene/noble metal systems for low-loss plasmonics applications. Phys Rev B 87(4):045428CrossRefGoogle Scholar
  27. 27.
    Schedin F, Lidorikis E, Lombardo A, Kravets VG, Geim AK, Grigorenko AN, Novoselov KS, Ferrari AC (2010) Surface-enhanced Raman spectroscopy of graphene. ACS nano 4(10):5617CrossRefGoogle Scholar
  28. 28.
    Alonso-González P, Nikitin AY, Golmar F, Centeno A, Pesquera A, Vélez S, Chen J, Navickaite G, Koppens F, Zurutuza A et al (2014) Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344(6190):1369CrossRefGoogle Scholar
  29. 29.
    Heliotis G, Itskos G, Murray R, Dawson MD, Watson IM, Bradley DD (2006) Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer. Adv Mater 18(3):334CrossRefGoogle Scholar
  30. 30.
    Govorov AO, Bryant GW, Zhang W, Skeini T, Lee J, Kotov NA, Slocik JM, Naik RR (2006) Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies. Nano Lett 6(5):984CrossRefGoogle Scholar
  31. 31.
    Govorov AO, Lee J, Kotov NA (2007) Theory of plasmon-enhanced förster energy transfer in optically excited semiconductor and metal nanoparticles. Phys Rev B 76(12):125308CrossRefGoogle Scholar
  32. 32.
    Komarala VK, Bradley AL, Rakovich YP, Byrne SJ, Gun’ko YK, Rogach AL (2008) Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots. Appl Phys Lett 93(12):123102CrossRefGoogle Scholar
  33. 33.
    Dombi P (2009) Surface plasmon-enhanced photoemission and electron acceleration with ultrashort laser pulses. Advances in Imaging and Electron Physics 158:1CrossRefGoogle Scholar
  34. 34.
    Kanemitsu Y, Matsuda K (2011) Energy transfer between excitons and plasmons in semiconductor–metal hybrid nanostructures. J Lumin 131(3):510CrossRefGoogle Scholar
  35. 35.
    Cox JD, Singh MR, Gumbs G, Anton MA, Carreno F (2012) Dipole-dipole interaction between a quantum dot and a graphene nanodisk. Phys Rev B 86(12):125452CrossRefGoogle Scholar
  36. 36.
    Biehs SA, Agarwal GS (2013) Large enhancement of förster resonance energy transfer on graphene platforms. Appl Phys Lett 103(24):243112CrossRefGoogle Scholar
  37. 37.
    Carreño F, Antón M, Melle S, Calderón OG, Cabrera-Granado E, Cox J, Singh MR, Egatz-Gómez A (2014) Plasmon-enhanced terahertz emission in self-assembled quantum dots by femtosecond pulses. J Appl Phys 115(6):064304CrossRefGoogle Scholar
  38. 38.
    Paradisi A, Biscaras J, Shukla A (2015) Space charge induced electrostatic doping of two-dimensional materials: graphene as a case study. Appl Phys Lett 107(14):143103CrossRefGoogle Scholar
  39. 39.
    Chu W, Duan S, Zhu JL (2007) Three-level structure design and optically controlled current in coupled quantum dots. Appl Phys Lett 90(22):222102CrossRefGoogle Scholar
  40. 40.
    Hohenester U, Troiani F, Molinari E, Panzarini G, Macchiavello C (2000) Coherent population transfer in coupled semiconductor quantum dots. Appl Phys Lett 77(12):1864CrossRefGoogle Scholar
  41. 41.
    Singh J, Williams RT (2016) Excitonic and photonic processes in materials. Springer, SingaporeGoogle Scholar
  42. 42.
    Törmä P, Barnes WL (2014) Strong coupling between surface plasmon polaritons and emitters: a review. Rep Prog Phys 78(1):013901CrossRefGoogle Scholar
  43. 43.
    Baieva SV, Hakala TK, Toppari JJ (2012) Strong coupling between surface plasmon polaritons and sulforhodamine 101 dye. Nanoscale Res Lett 7(1):191CrossRefGoogle Scholar
  44. 44.
    Wang H, Wang HY, Toma A, Yano Ta, Chen QD, Xu HL, Sun HB, Proietti Zaccaria R (2016) Dynamics of strong coupling between CdSe quantum dots and surface plasmon polaritons in subwavelength hole array. J Phys Chem Lett 7(22):4648CrossRefGoogle Scholar
  45. 45.
    Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  46. 46.
    Sarid D, Challener W (2010) Modern introduction to surface plasmons: theory, mathematica modeling and applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  47. 47.
    Premaratne M, Stockman MI (2017) Theory and technology of spasers. Adv Opt Photon 9(1):79CrossRefGoogle Scholar
  48. 48.
    Scully MO, Zubairy MS (1997) Quantum optics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  49. 49.
    Christensen T, Wang W, Jauho AP, Wubs M, Mortensen NA (2014) Classical and quantum plasmonics in graphene nanodisks: role of edge states. Phys Rev B 90(24):241414CrossRefGoogle Scholar
  50. 50.
    Mackowski S, Gurung T, Jackson H, Smith L, Furdyna J, Dobrowolska M (2004) Optical orientation of excitons in CdSe self-assembled quantum dots. arXiv:cond-mat/0411036
  51. 51.
    Bederson B, Walther H (2001) Advances in atomic, molecular, and optical physics, advances in atomic, molecular, and optical physics, vol 46. Academic Press, CambridgeGoogle Scholar
  52. 52.
    Wang JS, Chiu KP, Lin CY, Tsai YH, Yuan CT (2017) Modification of spontaneous emission rates of self-assembled CdSe quantum dots by coupling to hybrid optical nanoantennas. Plasmonics 12(2):433CrossRefGoogle Scholar
  53. 53.
    Dong H, Gao W, Yan F, Ji H, Ju H (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82(13):5511CrossRefGoogle Scholar
  54. 54.
    Chen Z, Berciaud S, Nuckolls C, Heinz TF, Brus LE (2010) Energy transfer from individual semiconductor nanocrystals to graphene. ACS nano 4(5):2964CrossRefGoogle Scholar
  55. 55.
    Ficek Z, Swain S (2005) Quantum interference and coherence: theory and experiments, vol 100. Springer Science & Business Media, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Astronomy, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Research Chair on Laser Diagnosis of Cancers, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations