, Volume 13, Issue 6, pp 2417–2421 | Cite as

Controlling Surface Plasmon Optical Transmission by Stretching a Silver-Coated Elastomeric Grating Substrate

  • Chutiparn LertvachirapaiboonEmail author
  • Yuya Ito
  • Akira BabaEmail author
  • Kazunari Shinbo
  • Keizo Kato


In this study, transmission surface plasmon resonance (TSPR) of a silver-coated elastomeric grating substrate was tuned via mechanical stretching. The wavelengths of TSPR excitation peaks, corresponding to surface plasmon dispersion modes of + 1 and − 1, were simultaneously observed. The TSPR excitation wavelength was dramatically shifted up to 80 nm when the strain of the substrate reached 13.3%. The fine control of TSPR properties of the silver-coated elastomeric grating substrate has potential applications in mechanically tunable band pass filters, optical sensors, etc.


Transmission surface plasmon resonance Elastomeric grating substrate 


Funding Information

This study was supported by JSPS KAKENHI Grant Numbers JP16K13662 and JP17H03231, and Niigata University U-go grant.


  1. 1.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669CrossRefGoogle Scholar
  2. 2.
    Singh BK, Hillier AC (2008) Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings. Anal Chem 80:3803–3810CrossRefPubMedGoogle Scholar
  3. 3.
    Yeh WH, Kleingartner J, Hillier AC (2010) Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating. Anal Chem 82:4988–4993CrossRefPubMedGoogle Scholar
  4. 4.
    Yeh WH, Petefish JW, Hillier AC (2011) Diffraction-based tracking of surface plasmon resonance enhanced transmission through a gold-coated grating. Anal Chem 83:6047–6053CrossRefPubMedGoogle Scholar
  5. 5.
    Baba A, Tada K, Janmanee R, Sriwichai S, Shinbo K, Kato K, Kaneko F, Phanichphant S (2012) Controlling surface plasmon optical transmission with an electrochemical switch using conducting polymer thin films. Adv Funct Mater 22:4383–4388CrossRefGoogle Scholar
  6. 6.
    Janmanee R, Baba A, Phanichphant S, Sriwichai S, Shinbo K, Kato K, Kaneko F (2012) In situ electrochemical-transmission surface plasmon resonance spectroscopy for poly(pyrrole-3-carboxylic acid) thin film-based biosensor applications. ACS Appl Mater Interfaces 4:4270–4275CrossRefPubMedGoogle Scholar
  7. 7.
    Lertvachirapaiboon C, Supunyabut C, Baba A, Ekgasit S, Thammacharoen C, Shinbo K, Kato K, Kaneko F (2013) Transmission surface plasmon resonance signal enhancement via growth of gold nanoparticles on a gold grating surface. Plasmonics 8:369–375CrossRefGoogle Scholar
  8. 8.
    Yeh WH, Hillier AC (2013) Use of dispersion imaging for grating-coupled surface plasmon resonance sensing of multilayer Langmuir–Blodgett films. Anal Chem 85:4080–4086CrossRefPubMedGoogle Scholar
  9. 9.
    Lertvachirapaiboon C, Baba A, Ekgasit S, Thammacharoen C, Shinbo K, Kato K, Kaneko F (2014) Distance-dependent surface plasmon resonance coupling between a gold grating surface and silver nanoparticles. Plasmonics 9:899–905CrossRefGoogle Scholar
  10. 10.
    Shinbo K, Takizawa K, Obata N, Lertvachirapaiboon C, Baba A, Kato K, Kaneko F (2016) Transmission light property due to grating-coupled long-range surface plasmon resonance. Polym Bull 73:2539–2546CrossRefGoogle Scholar
  11. 11.
    Lertvachirapaiboon C, Baba A, Ekgasit S, Shinbo K, Kato K, Kaneko F (2017) Microfluidic transmission surface plasmon resonance enhancement for biosensor applications. Jpn J Appl Phys 56:017002-1–017002-4CrossRefGoogle Scholar
  12. 12.
    Lertvachirapaiboon C, Baba A, Ekgasit S, Shinbo K, Kato K, Kaneko F (2017) Transmission surface plasmon resonance imaging of silver nanoprisms enhanced propagating surface plasmon resonance on a metallic grating structure. Sensors Actuators B 249:39–43CrossRefGoogle Scholar
  13. 13.
    Lertvachirapaiboon C, Baba A, Ekgasit S, Shinbo K, Kato K, Kaneko F (2018) Transmission surface plasmon resonance techniques and their potential biosensor applications. Biosens Bioelectron 99:399–415CrossRefPubMedGoogle Scholar
  14. 14.
    Sriwichai S, Baba A, Phanichphant S, Shinbo K, Kato K, Kaneko F (2015) In situ study of electropolymerized poly(3-aminobenzoic acid) thin film on BD-R and DVD-R grating substrates by electrochemical-transmission surface plasmon resonance spectroscopy. Int J Polym Sci 2015:650516CrossRefGoogle Scholar
  15. 15.
    Thio T, Ghaemi HF, Lezec HJ, Wolff PA, Ebbesen TW (1999) Surface-plasmon-enhanced transmission through hole arrays in Cr films. J Opt Soc Am B 16:1743–1748CrossRefGoogle Scholar
  16. 16.
    Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004) Surface plasmon sensor based on the enhanced light transmission through array of nanoholes in gold films. Langmuir 20:4813–4815CrossRefPubMedGoogle Scholar
  17. 17.
    Lezec HJ, Thio T (2004) Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Opt Express 12:3629–3651CrossRefPubMedGoogle Scholar
  18. 18.
    Brolo AG, Kwok SC, Moffitt MG, Gordon R, Riordon J, Kavanagh KL (2005) Enhanced fluorescence from arrays of nanoholes in a gold film. J Am Chem Soc 127:14936–14941CrossRefPubMedGoogle Scholar
  19. 19.
    Haftel MI (2006) Role of cylindrical surface plasmons in enhanced transmission. Appl Phys Lett 88:193104CrossRefGoogle Scholar
  20. 20.
    Wu S, Guo P, Huang W, Xiao S, Zhu Y (2011) Dielectric thickness detection sensor based on metallic nanohole arrays. J Phys Chem C 115:15205–15209CrossRefGoogle Scholar
  21. 21.
    Clark AW, Cooper JM (2012) Plasmon shaping by using protein nanoarrays and molecular lithography to engineer structural color. Angew Chem Int Ed 51:3562–3566CrossRefGoogle Scholar
  22. 22.
    Li Z, Clark AW, Cooper JM (2016) Dual color plasmonic pixels create a polarization controlled nano color palette. ACS Nano 10:492–498CrossRefPubMedGoogle Scholar
  23. 23.
    Olcum S, Kocabas A, Ertas G, Atalar A, Aydinli A (2009) Tunable surface plasmon resonance on an elastomeric substrate. Opt Express 17:8542–8547CrossRefPubMedGoogle Scholar
  24. 24.
    Yu C, O’Brien K, Zhang Y, Yu H, Jiang H (2010) Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates. Appl Phys Lett 96:041111CrossRefGoogle Scholar
  25. 25.
    Cole RM, Mahajan S, Baumberg JJ (2009) Stretchable metal-elastomer nanovoids for tunable plasmons. Appl Phys Lett 95:154103CrossRefGoogle Scholar
  26. 26.
    Zhu X, Shi L, Liu X, Zi J, Wang Z (2010) A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate. Nano Res 3:807–812CrossRefGoogle Scholar
  27. 27.
    Wang Y, Liu L, Wang Q, Han W, Lu M, Dong L (2016) Strain-tunable plasmonic crystal using elevated nanodisks with polarization-dependent characteristics. Appl Phys Lett 108:071110CrossRefGoogle Scholar
  28. 28.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on grating. Springer, BerlinCrossRefGoogle Scholar
  29. 29.
    Baba A, Kanda K, Ohno T, Ohdaira Y, Shinbo K, Kato K, Kaneko F (2010) Multimode surface plasmon excitations on organic thin film/metallic diffraction grating. Jpn J Appl Phys 49:01AE02-1–01AE02-4CrossRefGoogle Scholar
  30. 30.
    Lertvachirapaiboon C, Yamazaki R, Pienpinijtham P, Baba A, Ekgasit S, Thammacharoen C, Shinbo K, Kato K, Kaneko F (2012) Solution-based fabrication of gold grating film for use as a surface plasmon resonance sensor chip. Sensors Actuators B 173:316–321CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Science and TechnologyNiigata UniversityNiigataJapan

Personalised recommendations