, Volume 13, Issue 6, pp 2405–2415 | Cite as

Near-Perfect Spectral Transmission Properties for Two Cascaded Plasmonic Ultrathin Nanograting Structures

  • Bo Zhao
  • Jianjun YangEmail author
  • Zhenfen Huang


A high-performance plasmonic transmission structure consisting of two longitudinally cascaded ultrathin metallic nanogratings with a half period lateral dislocated and separated by two heterogeneous dielectric layers is proposed and theoretically studied. Three near-unity spectral transmission peaks are observed for the cascaded plasmonic nanograting structure due to the evanescent field coupling of surface plasmon polariton waves supported by the two neighboring plasmonic nanogratings. The physical mechanism responsible for the near-perfect peak transmissions is discussed based on the corresponding spatial distributions of electromagnetic fields and is found to be two possible ways: by the excitation of hybrid anti-symmetric surface plasmon polariton leaky mode on the incident and transmission surfaces of the cascaded plasmonic nanograting structure or by the formation of localized surface plasmon polariton resonance modes within horizontally butt-jointed metal/insulator/metal coupled waveguides between the two cascaded plasmonic nanogratings. It is the two heterogeneous dielectric layers inserted between the two cascaded plasmonic nanogratings that is indispensable for the formation of the hybrid anti-symmetric surface plasmon polariton leaky mode, resulting in the near-unity transmission peak with an ultra-narrow bandwidth of 20 nm. The high-tunability of spectral transmission behaviors with varying structural parameters and dielectric layer are explored, which promise numerous potential applications in nano-optics devices, such as plasmonic filters, sensors, and nanoscale distance ruler.


Surface plasmon polariton Metallic nanograting Transmission Leaky mode Waveguide resonance mode 


Funding Information

We acknowledge financial supports from the National Science Foundation of China (grant no. 11674178).


  1. 1.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669CrossRefGoogle Scholar
  2. 2.
    Porto JA, Garcı’a-Vidal FJ, Pendry JB (1999) Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett 83:2845–2848CrossRefGoogle Scholar
  3. 3.
    Martin-Moreno L, Garcia-Vidal FJ, Lezec HJ, Pellerin KM, Thio T, Pendry JB, Ebbesen TW (2001) Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86:1114–1117CrossRefPubMedGoogle Scholar
  4. 4.
    Li XF, Yu SF (2010) Extremely high sensitive plasmonic refractive index sensors based on metallic grating. Plasmonics 5(4):389–394CrossRefGoogle Scholar
  5. 5.
    Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96(25):251104CrossRefGoogle Scholar
  6. 6.
    Yang XF, Zhang SX, Zhang DH, Wang YK, Wang J (2013) Subwavelength interference lithography based on a unidirectional surface plasmon coupler. Opt Eng 52(8):086109CrossRefGoogle Scholar
  7. 7.
    Vincenti MA, Grande M, De Ceglia D, Stomeo T, Petruzzelli V, De Vittorio M, Scalora M, D’ Orazio A (2012) Color control through plasmonic metal gratings. Appl Phys Lett 100(20):201107CrossRefGoogle Scholar
  8. 8.
    Sun Z, Zuo X, Lin Q (2010) Plasmon-induced nearly null transmission of light through gratings in very thin metal films. Plasmonics 5:13–19CrossRefGoogle Scholar
  9. 9.
    Xiao S, Zhang J, Peng L, Jeppesen C, Malureanu R, Kristensen A, Mortensen NA (2010) Nearly zero transmission through periodically modulated ultrathin metal films. Appl Phys Lett 97:071116CrossRefGoogle Scholar
  10. 10.
    Liu T, Shen Y, Shin W, Zhu Q, Fan S, Jin C (2014) Dislocated double-layer metal gratings: an efficient unidirectional coupler. Nano Lett 14(7):3848–3854CrossRefPubMedGoogle Scholar
  11. 11.
    Ma R, Liu Y, Yu Z, Zhang Y, Chen L, Wu D, Li Y, Ye H (2016) The sensing characteristics of periodic staggered surface plasmon gratings. Opt Commun 381:391–395CrossRefGoogle Scholar
  12. 12.
    Jia Z, Shuai Y, Chen X, Tan H (2016) Double directions nanoscale range finding using Fano resonance in coupled gratings. Plasmonics 11:1331–1336CrossRefGoogle Scholar
  13. 13.
    Wang C, Chang Y, Tsai D (2009) Spatial filtering by using cascading plasmonic gratings. Opt Express 17(8):6218–6223CrossRefPubMedGoogle Scholar
  14. 14.
    Christ A, Zentgraf T, Tikhodeev SG, Gippius NA, Kuhl J, Giessen H (2006) Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations. Phys Rev B 74:155435CrossRefGoogle Scholar
  15. 15.
    Wu J, Zhou C, Yu J, Cao H, Li S, Jia W (2014) Polarization-independent absorber based on a cascaded metal–dielectric grating structure. IEEE Photonics Tech L 26(9):949–952CrossRefGoogle Scholar
  16. 16.
    Sun Z, Zuo X (2011) Tunable absorption of light via localized plasmon resonances on a metal surface with interspaced ultra-thin metal gratings. Plasmonics 6:83–89CrossRefGoogle Scholar
  17. 17.
    Lei J, Ji B, Lin J (2017) High-performance tunable plasmonic absorber based on the metal-insulator-metal grating nanostructure. Plasmonics 12:1–6CrossRefGoogle Scholar
  18. 18.
    Wang CM, Chang YC, Tsai MW, Ye YH, Chen CY, Jiang YW, Lee SC, Tsai DP (2008) Angular independent infrared filter assisted by localized surface plasmon polariton. Photon Technol Lett 20: 1103-1105CrossRefGoogle Scholar
  19. 19.
    Wang CM, Chang YC, Tsai MW, Ye YH, Chen CY, Jiang YW, Lee SC, Tsai DP (2007) Reflection and emission properties of an infrared emitter. Opt Express 15:14673–14678CrossRefPubMedGoogle Scholar
  20. 20.
    Wang W, Zhao D, Chen Y, Gong H, Chen X, Dai S, Yang Y, Li Q, Qiu M (2014) Grating-assisted enhanced optical transmission through a seamless gold film. Opt Express 22(5):5416–5421CrossRefPubMedGoogle Scholar
  21. 21.
    Wang Z, Hou Y, Li W, Li X, Cai A (2016) Tunnel light through a continuous optically thick metal film utilizing higher order magnetic plasmon resonance. Plasmonics 11(6):1–6CrossRefGoogle Scholar
  22. 22.
    Liu Z, Liu G, Huang K, Chen Y, Hu Y, Zhang X, Cai Z (2013) Enhanced optical transmission of a continuousmetal film with double metal cylinder arrays. IEEE Photon Technol Lett 25(12):1157–1160CrossRefGoogle Scholar
  23. 23.
    Liu G, Hu Y, Liu Z, Chen Y, Cai Z, Zhang X, Huang K (2014) Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference timedomain method. Phys Chem Chem Phys 16(9):4320–4328CrossRefPubMedGoogle Scholar
  24. 24.
    Chen Y, Liu G, Huang K, Hu Y, Zhang X, Cai Z (2013) Enhanced transmission of a plasmonic ellipsoid array via combining with double continuous metal films. Opt Commun 311:100–106CrossRefGoogle Scholar
  25. 25.
    Hu Y, G-q L, Z-q L, Y-h C, X-n Z, Z-j C, X-s L (2014) Robust double-spectral transparency of double mutually staggered plasmonic arrays sandwiched by two continuous metal films. Opt Commun 321:219–225Google Scholar
  26. 26.
    Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW, Ward CA (1983) Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Opt 22(7):1099–1119CrossRefPubMedGoogle Scholar
  27. 27.
    Braum J, Gompf B, Kobiela G, Dressel M (2009) How holes can obscure the view: suppressed transmission through an ultrathinmetal film by a subwavelength hole array. Phys Rev Lett 103:203901Google Scholar
  28. 28.
    Yang FZ, Sambles JR, Bradberry GW (1991) Long-range surface modes supported by thin films. Phys. Rev. B 44:5855–5872CrossRefGoogle Scholar
  29. 29.
    Collin S, Pardo F, Pelouard JL (2007) Waveguiding in nanoscale metallic apertures. Opt Express 15(7):4310–4320CrossRefPubMedGoogle Scholar
  30. 30.
    Burke JJ, Stegeman GI, Tamir T (1986) Surface-polariton-like waves guide by thin lossy metal films. Phys Rev B 33:5186–5201CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic Information and PhysicsChangzhi UniversityChangzhiChina
  2. 2.Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of SciencesChangchunChina

Personalised recommendations