Advertisement

Plasmonics

, Volume 13, Issue 6, pp 2369–2376 | Cite as

Power-Law/Exponential Transport of Electromagnetic Field in One-Dimensional Metallic Nanoparticle Arrays

  • Gang Song
  • Wei Zhang
Article
  • 32 Downloads

Abstract

Based on the coupled-dipole analysis and finite-difference time-domain simulation, we have investigated the surface plasmon propagation in one-dimensional metallic nanoparticle (NP) chains. Our systematic studies reveal that the interplay between the localized plasmon excitation and the lattice collective behavior leads to two phases (I and II) of different electromagnetic (EM) field transport properties. In phase I, the EM field decays follow the power-law. In phase II, the EM field shows the exponential decay in the short-distance regime and the power-law decay in the long-distance regime. Moreover, universal power-law exponents have been found in the long propagation distance. Different EM field propagation behaviors (power-law decay with different exponents, exponential decay with different propagation length) can be transformed to each other by tuning the parameters of the excitation fields (wavelength, polarization) and/or those of the NP chains. The EM field transport mechanisms we have found are very useful in the design of plasmonic waveguide with both strong field confinement and efficient field/energy transfer, which has important applications in integrated nanophotonic circuits.

Keywords

Surface plasmon Propagations Power-law decay 

Notes

Funding Information

This work was partially supported by National Key Research and Development Program of China (Grant No. 2017YFA0303400), National Natural Science Foundation of China (Grant Nos. 11774036, 11374039).

References

  1. 1.
    Wood RW (1902) On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc Phys Soc Lond 18:269–275CrossRefGoogle Scholar
  2. 2.
    Auguié B, Barnes WL (2008) Collective resonances in gold nanoparticle arrays. Phys Rev Lett 101:143902CrossRefPubMedGoogle Scholar
  3. 3.
    Haes AJ, Van Duyne RP (2004) A unified view of propagating and localized surface plasmon resonance biosensors. Anal Bioanal Chem 379:920–930CrossRefPubMedGoogle Scholar
  4. 4.
    Fischer MP, Schmidt C, Sakat E, Stock J, Samarelli A, Frigerio J, Ortolani M, Paul DJ, Isella G, Leitenstorfer A, Biagioni P, Brida D (2016) Optical activation of germanium plasmonic antennas in the mid-infrared. Phys Rev Lett 117:047401CrossRefPubMedGoogle Scholar
  5. 5.
    Ma J, Pesin DA (2017) Dynamic chiral magnetic effect and Faraday rotation in macroscopically disordered helical metals. Phys Rev Lett 118:107401CrossRefPubMedGoogle Scholar
  6. 6.
    Ling CW, Xiao M, Chan CT, Yu SF, Fung KH (2015) Topological edge plasmon modes between diatomic chains of plasmonic nanoparticles. Opt Express 23:2021CrossRefPubMedGoogle Scholar
  7. 7.
    Song G, Wei Zhang (2017) Electromagnetic field propagation in the one-dimensional silver nanoparticle dimer chains: hotspots and energy transport. Plasmonics 12:179–184CrossRefGoogle Scholar
  8. 8.
    Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229–232CrossRefPubMedGoogle Scholar
  9. 9.
    Maier SA, Kik PG, Atwater HA (2002) Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss. Appl Phys Lett 81:1714–1716CrossRefGoogle Scholar
  10. 10.
    Pike NA, Stroud D (2013) Plasmonic waves on a chain of metallic nanoparticles: effects of a liquid-crystalline host. J Opt Soc Am B 30:1127–1134CrossRefGoogle Scholar
  11. 11.
    Park SY, Stroud D (2004) Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation. Phys Rev B 69:125418CrossRefGoogle Scholar
  12. 12.
    Crozier KB, Togan E, Simsek E, Yang T (2007) Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains. Opt Express 15:17482–17493CrossRefPubMedGoogle Scholar
  13. 13.
    Yang T, Crozier KB (2008) Dispersion and extinction of surface plasmons in an array of gold nanoparticle chains: influence of the air/glass interface. Opt Express 16:8570–8580CrossRefPubMedGoogle Scholar
  14. 14.
    Kravets VV, Ocola LE, Khalavka Y, Pinchuk AO (2015) Polarization and distance dependent coupling in linear chains of gold nanoparticles. Appl Phys Lett 106:053104CrossRefGoogle Scholar
  15. 15.
    Stepanov AL, Krenn JR, Ditlbacher H, Hohenau A, Drezet A, Steinberger B, Leitner A, Aussenegg FR (2005) Quantitative analysis of surface plasmon interaction with silver nanoparticles. Opt Lett 30:1524–1526CrossRefPubMedGoogle Scholar
  16. 16.
    Xiao JJ, Yakubo K, Yu KW (2006) Dispersion and transitions of dipolar plasmon modes in graded plasmonic waveguides. Appl Phys Lett 89:221503CrossRefGoogle Scholar
  17. 17.
    SolisJr D, Willingham B, Nauert SL, Slaughter LS, Olson J, Swanglap P, Paul A, Chang WS, Link S (2012) Electromagnetic energy transport in nanoparticle chains via dark plasmon modes. Nano Lett 12:1349–1353CrossRefGoogle Scholar
  18. 18.
    SolisJr D, Paul A, Olson J, Slaughter LS, Swanglap P, Chang WS, Link S (2013) Turning the corner: efficient energy transfer in bent plasmonic nanoparticle chain waveguides. Nano Lett 13:4779–4784CrossRefGoogle Scholar
  19. 19.
    Yin LL, Vlasko-Vlasov VK, Pearson J, Hiller JM, Hua J, Welp U, Brown DE, Kimball CW (2005) Subwavelength focusing and guiding of surface plasmons. Nano Lett 5:1399–1402CrossRefPubMedGoogle Scholar
  20. 20.
    Radko IP, Bozhevolnyi SI, Evlyukhin AB (2007) A surface plasmon polariton beam focusing with parabolic nanoparticle chains. Opt Express 15:6576–6582CrossRefPubMedGoogle Scholar
  21. 21.
    Willingham B, Link S (2011) Energy transport in metal nanoparticle chains via sub-radiant plasmon modes. Opt Express 19:6450–6461CrossRefPubMedGoogle Scholar
  22. 22.
    Barrow SJ, Funston AM, Gomez DE, Davis TJ, Mulvaney P (2011) Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer. Nano Lett 11:4180–4187CrossRefPubMedGoogle Scholar
  23. 23.
    Fevrier M, Gogol P, Aassime A, Megy R, Delacour C, Chelnokov A, Apuzzo A, Blaize S, Lourtioz JM, Dagens B (2012) Giant coupling effect between metal nanoparticle chain and optical waveguide. Nano Lett 12:1032–1037CrossRefPubMedGoogle Scholar
  24. 24.
    Quinten M, Leitner A, Krenn JR, Aussenegg FR (1998) Electromagnetic energy transport via linear chains of silver nanoparticles. Opt Lett 23:1331–1333CrossRefPubMedGoogle Scholar
  25. 25.
    Markel VA, Sarychev AK (2007) Propagation of surface plasmons in ordered and disordered chains of metal nanospheres. Phys Rev B 75:085426CrossRefGoogle Scholar
  26. 26.
    Rasskazov IL, Karpov SV, Markel VA (2013) Nondecaying surface plasmon polaritons in linear chains of silver nanospheroids. Opt Lett 38:4743–4746CrossRefPubMedGoogle Scholar
  27. 27.
    Rasskazov IL, Karpov SV, Markel VA (2014) Waveguiding properties of short linear chains of nonspherical metal nanoparticles. J Opt Soc Am B 31:2981–2989CrossRefGoogle Scholar
  28. 28.
    Rasskazov IL, Karpov SV, Markel VA (2014) Surface plasmon polaritons in curved chains of metal nanoparticles. Phys Rev B 90:075405CrossRefGoogle Scholar
  29. 29.
    Brandstetter-Kunc A, Weick G, Downing CA, Weinmann D, Jalabert RA (2016) Nonradiative limitations to plasmon propagation in chains of metallic nanoparticles. Phys Rev B 94:205432CrossRefGoogle Scholar
  30. 30.
    Downing CA, Mariani E, Weick G (2017) Retardation effects on the dispersion and propagation of plasmons in metallic nanoparticle chains. J Phys.: Condens Matter 30:025301Google Scholar
  31. 31.
    Fung KH, Tang RCH, Chan CT (2011) Analytical properties of the plasmon decay profile in a periodic metal-nanoparticle chain. Opt Lett 36:2206CrossRefPubMedGoogle Scholar
  32. 32.
    Zou SL, Schatz GC (2006) Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths. Nanotechnology 17:2813–2820CrossRefGoogle Scholar
  33. 33.
    Lynch DW, Hunter WR (1985) Silver (Ag). In: Palik ED (ed) Handbook of optical constants of solids. Academic, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Applied Physics and Computational MathematicsBeijingPeople’s Republic of China
  2. 2.Beijing Computational Science Research CentreBeijingPeople’s Republic of China

Personalised recommendations