, Volume 13, Issue 6, pp 2361–2367 | Cite as

Diffraction-Limited Focusing of Plasmonic Wave by a Parabolic Mirror

  • P. N. MelentievEmail author
  • A. A. Kuzin
  • D. V. Negrov
  • V. I. BalykinEmail author


We demonstrate effective, up to 30%, reflection of the surface plasmon-polariton wave (SPP) from a nanogroove made on Ag film surface. The use of SPP reflection from a nanogroove having a shape of parabola helps to realize a new element in nanoplasmonics—parabolic SPP mirror. It was found that the mirror allows focusing of the SPP into a diffraction-limited spot with a lateral size of about λSPP (λSPP = 800 nm—SPP wavelength). The possibility of spatial scanning the focusing spot of SPP on the surface of Ag film is shown.


Surface plasmon-polaritons Focusing of SPP Nanogroove Parabolic mirror Ag film 


Funding Information

This work was supported by the Russian Foundation for Basic Research (grant no. 17-02-01093). The research was financially supported by the Advanced Research Foundation (contract number 7/004/2013-2018 on 23.12.2013). Samples fabrication was performed using equipment of MIPT Shared Facilities Center and with financial support from the Ministry of Education and Science of the Russian Federation (Grant No. RFMEFI59417X0014).


  1. 1.
    West PR (2010) Searching for better plasmonic materials. Laser Photon Rev 4:795CrossRefGoogle Scholar
  2. 2.
    Balykin VI, Melentiev PN (2018) Optics and spectroscopy of individual plasmonic nanostructure. Physics-Uspekhi 61. CrossRefGoogle Scholar
  3. 3.
    Brongersma ML, Shalaev VM (2010) The Case for Plasmonics. Science 328:440–441CrossRefPubMedGoogle Scholar
  4. 4.
    Zia R, Schuller JA, Chandran A, Brongersma ML (2006) Plasmonics: the next chip-scale technology. Mater Today 9:20–27CrossRefGoogle Scholar
  5. 5.
    Kuttge M, García de Abajo FJ, Polman A (2009) How grooves reflect and confine surface plasmon polaritons. Opt Express 17:10385CrossRefPubMedGoogle Scholar
  6. 6.
    Oulton RF, Pile DFP, Liu Y, Zhang X (2007) Scattering of surface plasmon polaritons at abrupt surface interfaces: Implications for nanoscale cavities. Phys Rev B 76:035408CrossRefGoogle Scholar
  7. 7.
    Ditlbacher H, Krenn JR, Schider G, Leitner A, Aussenegg FR (2002) Two-dimensional optics with surface plasmon polaritons. Appl Phys Lett 81:1762–1764CrossRefGoogle Scholar
  8. 8.
    Krasavin AV, Zayats AV (2007) Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides. Appl Phys Lett 90:211101CrossRefGoogle Scholar
  9. 9.
    Melentiev PN, Kuzin AA, Balykin VI, Ignatov AI, Merzlikin AM (2017) Dielectric-loaded plasmonic waveguide in the visible spectral range. Laser Phys Lett 14:126201CrossRefGoogle Scholar
  10. 10.
    Temnov VV, Nelson KA, Armelles G, Cebollada A, Thomay T, Leitenstorfer A, Bratschitsch R (2009) Femtosecond surface plasmon interferometry. Opt Express 17:8423CrossRefPubMedGoogle Scholar
  11. 11.
    Melentiev PN, Kuzin AA, Gritchenko AS, Kalmykov AS, Balykin VI (2017) Femtosecond plasmon interferometer. Opt Commun 382:509–513CrossRefGoogle Scholar
  12. 12.
    Radko IP, Bozhevolnyi SI, Brucoli G, Martín-Moreno L, García-Vidal FJ, Boltasseva A (2009) Efficient unidirectional ridge excitation of surface plasmons. Opt Express 17:7228CrossRefPubMedGoogle Scholar
  13. 13.
    Volkov VS, Bozhevolnyi SI, Rodrigo SG, Martin-Moren L, García-Vidal FJ, Devaux E, Ebbesen TW (2009) Nanofocusing with Channel Plasmon Polaritons. Nano Lett 9:1278–1282CrossRefPubMedGoogle Scholar
  14. 14.
    Dennis Brian S et al (2015) Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens. Opt Express 23:21899–21908CrossRefPubMedGoogle Scholar
  15. 15.
    Melentiev PN, Kuzin AA, Balykin VI (2017) Control of SPP propagation and focusing through scattering from nanostructures. Quant Electron 47:266–271CrossRefGoogle Scholar
  16. 16.
    Homola J, Sinclair SY, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B Chem 54:3–15CrossRefGoogle Scholar
  17. 17.
    Min BK, Kim SJ, Kim D (2007) Appl Opt 46:5703CrossRefGoogle Scholar
  18. 18.
    Tong L, Wei H, Zhang S, Xu H (2014) Recent Advances in Plasmonic Sensors. Sensors 14:7959–7973CrossRefPubMedGoogle Scholar
  19. 19.
    Melentiev P, Kalmykov A, Gritchenko A, Afanasiev A, Balykin V, Baburin A, Ryzhova E, Filippov I, Rodionov I, Nechepurenko I, Dorofeenko A, Ryzhikov I, Vinogradov A, Zyablovsky A, Andrianov E, Lisyansky AA (2017) Plasmonic nanolaser for intracavity spectroscopy and sensorics. Appl Phys Lett 111:213104CrossRefGoogle Scholar
  20. 20.
    Bergman DJ, Stockman MI (2003) Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett 90:027402CrossRefPubMedGoogle Scholar
  21. 21.
    Stockman MI (2008) Spasers explained. Nat Photon 2:327–329CrossRefGoogle Scholar
  22. 22.
    Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U (2009) Demonstration of a spaser-based nanolaser. Nature 460:1110–1112CrossRefPubMedGoogle Scholar
  23. 23.
    Evlyukhin AB, Bozhevolnyi SI, Stepanov AL, Kiyan R, Reinhardt C, Passinger S, Chichkov BN (2007) Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles. Opt Express 15:16667–16680CrossRefPubMedGoogle Scholar
  24. 24.
    Kim H, Hahn J, Lee B (2008) Focusing properties of surface plasmon polariton floating dielectric lenses. Opt Express 16:3049–3057CrossRefPubMedGoogle Scholar
  25. 25.
    Zhao C, Liu Y, Zhao Y, Fang N, Huang TJ (2013) Nat Commun 4:2305CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331:290–291CrossRefPubMedGoogle Scholar
  27. 27.
    Graedel TE (1992) Corrosion mechanisms for silver exposed to the atmosphere. J Electrochem Soc 139:1963CrossRefGoogle Scholar
  28. 28.
    Zhang XY et al (2006) Ultrastable substrates for surface-enhanced raman Spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J Am Chem Soc 128:10304–10309CrossRefPubMedGoogle Scholar
  29. 29.
    Im H, Lindquist NC, Lesuffleur A, Oh SH (2010) Atomic layer deposition of dielectric overlayers for enhancing the optical properties and chemical stability of plasmonic nanoholes. ACS Nano 4:947–954CrossRefPubMedGoogle Scholar
  30. 30.
    Wu Y, Zhang C, Estakhri NM, Zhao Y, Kim J, Zhang M, Liu XX, Pribil GK, Alù A, Shih CK, Li X (2014) Intrinsic optical properties and enhanced plasmonic response of epitaxial silver. Adv Mater 26:6106–6110CrossRefPubMedGoogle Scholar
  31. 31.
    Raether H (1988) Surface plasmons on smooth surfaces. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  32. 32.
    Dawson P, de Fornel F, Goudonnet JP (1994) Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope. Phys Rev Lett 72:2927–2930CrossRefPubMedGoogle Scholar
  33. 33.
    Hong HY, Ha JS, Lee SS, Park JH (2017) Effective propagation of surface Plasmon Polaritons on graphene-protected single-crystalline silver films. ACS Appl Mater Interfaces 9:5014–5022CrossRefPubMedGoogle Scholar
  34. 34.
    Park JH, Ambwani P, Manno M, Lindquist NC, Nagpal P, Oh SH, Leighton C, Norris DJ (2012) Single-crystalline silver films for Plasmonics. Adv Mat 24:3988–3992CrossRefGoogle Scholar
  35. 35.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business Media, New YorkCrossRefGoogle Scholar
  36. 36.
    Kress SJP, Antolines FV, Richner P, Jayanti SV, Kim D, Prince F, Ridinger A, Fisher MPS, Mayer S, McPack KM, Pulikakos D, Norris DJ (2015) Nano Light 15:6267–6275Google Scholar
  37. 37.
    Liu JSQ, White JS, Fan S, Brongersma ML (2009) Side-coupled cavity model for surface plasmon-polariton transmission across a groove. Opt Express 17:17837–17848CrossRefPubMedGoogle Scholar
  38. 38.
    Bozhevolnyi S, Boltasseva A et al (2007) Opt Express 15:6576CrossRefPubMedGoogle Scholar
  39. 39.
    Smolyaninov II, Hung Y-J, Davis CC (2005) Surface plasmon dielectric waveguides. Appl Phys Lett 87:241106CrossRefGoogle Scholar
  40. 40.
    Novotny L, Hecht B (2012) Principles of nano-optics. Cambridge university press, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Spectroscopy Russian Academy of SciencesMoscowRussia
  2. 2.Higher School of EconomicsNational Research UniversityMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations