Advertisement

Plasmonics

, Volume 13, Issue 6, pp 2305–2312 | Cite as

Effect of Size Non-uniformity on Performance of a Plasmonic Perovskite Solar Cell: an Array of Embedded Plasmonic Nanoparticles with the Gaussian Distribution Radiuses

  • Hamid Heidarzadeh
  • Farzaneh Mehrfar
Article
  • 105 Downloads

Abstract

The effect of non-uniformity in size of nanoparticles on the performance of a plasmonic halide perovskite solar cell is investigated. An array of plasmonic nanoparticles inside CH3NH3PbI3 absorber is used to design an ultra-thin perovskite solar cell. The effect of nanoparticle size is done in a realistic structure in which random particle radiuses are considered according to a Gaussian distribution profile. Localized surface plasmon effects are also taken into account and photocurrent enhancement is obtained. To compare more, a perovskite solar cell without plasmonic nanoparticles is simulated. Using an array of nanoparticles inside CH3NH3PbI3 (uniform radius of 80 nm) increases its photocurrent density from 18 to 22.3 mA/cm2. The effects of non-uniformity on the photocurrent is done in which radiuses are selected according to a Gaussian distribution. Photocurrent densities of 20.81, 21.32, 21.7, 21.95, 22.07, and 22.08 mA/cm2 are obtained for the Gaussian standard deviations of 0.5, 0.6, 0.7, 0.8, 0.9, and 1, respectively.

Keywords

Perovskite solar cells Non-uniformity Plasmonic nanoparticles Plasmon enhancement Gaussian distribution Array of nanoparticles 

Notes

Acknowledgments

The authors would like to express their sincere thanks to the Deputy of Research of the University of Bonab for the financial grant and technical support.

References

  1. 1.
    Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8:506–514CrossRefGoogle Scholar
  2. 2.
    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y (2014) A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345:295–298CrossRefPubMedGoogle Scholar
  3. 3.
    Zhou H, Chen Q, Li G, Luo S, Song T-B, Duan H-S, Hong Z, You J, Liu Y, Yang Y (2014) Interface engineering of highly efficient perovskite solar cells. Science 345:542–546CrossRefPubMedGoogle Scholar
  4. 4.
    Tripathi N, Yanagida M, Shirai Y, Masuda T, Han L, Miyano K (2015) Hysteresis-free and highly stable perovskite solar cells produced via a chlorine-mediated interdiffusion method. J Mater Chem A 3:12081–12088CrossRefGoogle Scholar
  5. 5.
    Im J-H, Jang I-H, Pellet N, Grätzel M, Park N-G (2014) Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nanotechnol 9:927–932CrossRefPubMedGoogle Scholar
  6. 6.
    Nie W, Tsai H, Asadpour R, Blancon J-C, Neukirch AJ, Gupta G, Crochet JJ, Chhowalla M, Tretiak S, Alam MA (2015) High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347:522–525CrossRefPubMedGoogle Scholar
  7. 7.
    Ku Z, Rong Y, Xu M, Liu T, Han H (2013) Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci Rep 3:3132CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bermel P, Luo C, Zeng L, Kimerling LC, Joannopoulos JD (2007) Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. Opt Express 15:16986–17000CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang W, Saliba M, Stranks SD, Sun Y, Shi X, Wiesner U, Snaith HJ (2013) Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles. Nano Lett 13:4505–4510CrossRefPubMedGoogle Scholar
  10. 10.
    Berginski M, Hüpkes J, Schulte M, Schöpe G, Stiebig H, Rech B, Wuttig M (2007) The effect of front ZnO: Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells. J Appl Phys 101:074903CrossRefGoogle Scholar
  11. 11.
    Ferry VE, Verschuuren MA, Li HB, Verhagen E, Walters RJ, Schropp RE, Atwater HA, Polman A (2010) Light trapping in ultrathin plasmonic solar cells. Opt Express 18:A237–A245CrossRefPubMedGoogle Scholar
  12. 12.
    Heidarzadeh H, Rostami A, Matloub S, Dolatyari M, Rostami G (2015) Analysis of the light trapping effect on the performance of silicon-based solar cells: absorption enhancement. Appl Opt 54:3591–3601CrossRefGoogle Scholar
  13. 13.
    Heidarzadeh H, Dolatyari M, Rostami G, Rostami A (2015) Modeling of solar cell efficiency improvement using pyramid grating in single junction silicon solar cell. In: 2nd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2014), Springer, pp. 61–67Google Scholar
  14. 14.
    Catchpole K, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793–21800CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Heidarzadeh H, Rostami A, Dolatyari M, Rostami G (2016) Plasmon-enhanced performance of an ultrathin silicon solar cell using metal-semiconductor core-shell hemispherical nanoparticles and metallic back grating. Appl Opt 55:1779–1785CrossRefPubMedGoogle Scholar
  16. 16.
    Aeineh N, Barea EM, Behjat A, Sharifi N, Mora-Seró I (2017) Inorganic surface engineering to enhance perovskite solar cell efficiency. ACS Appl Mater Interfaces 9:13181–13187CrossRefGoogle Scholar
  17. 17.
    Guler U, Shalaev VM, Boltasseva A (2015) Nanoparticle plasmonics: going practical with transition metal nitrides. Mater Today 18:227–237CrossRefGoogle Scholar
  18. 18.
    Murray WA, Barnes WL (2007) Plasmonic materials. Adv Mater 19:3771–3782CrossRefGoogle Scholar
  19. 19.
    Chan K, Wright M, Elumalai N, Uddin A, Pillai S (2016) Plasmonics in organic and perovskite solar cells: optical and electrical effects. Adv Opt Mater 5: 16006981–160069810CrossRefGoogle Scholar
  20. 20.
    Maier SA (2007) Plasmonics: fundamentals and applications, Springer Science & Business MediaGoogle Scholar
  21. 21.
    Anaya M, Lozano G, Calvo ME, Zhang W, Johnston MB, Snaith HJ, Míguez H (2014) Optical description of mesostructured organic–inorganic halide perovskite solar cells. J Phys Chem Lett 6:48–53CrossRefPubMedGoogle Scholar
  22. 22.
    Ball JM, Stranks SD, Hörantner MT, Hüttner S, Zhang W, Crossland EJ, Ramirez I, Riede M, Johnston MB, Friend RH (2015) Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ Sci 8:602–609CrossRefGoogle Scholar
  23. 23.
    Lee JH, Park JH, Kim JS, Lee DY, Cho K (2009) High efficiency polymer solar cells with wet deposited plasmonic gold nanodots. Org Electron 10:416–420CrossRefGoogle Scholar
  24. 24.
    Notarianni M, Vernon K, Chou A, Aljada M, Liu J, Motta N (2014) Plasmonic effect of gold nanoparticles in organic solar cells. Sol Energy 106:23–37CrossRefGoogle Scholar
  25. 25.
    N’Konou K, Peres L, Torchio P (2017) Optical absorption modeling of plasmonic organic solar cells embedding silica-coated silver nanospheres. Plasmonics 13:297–303CrossRefGoogle Scholar
  26. 26.
    Parashar PK, Komarala VK (2017) Engineered optical properties of silver-aluminum alloy nanoparticles embedded in SiON matrix for maximizing light confinement in plasmonic silicon solar cells. Sci Rep 7:12520CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pillai S, Catchpole K, Trupke T, Green M (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105CrossRefGoogle Scholar
  28. 28.
    Yang J, You J, Chen C-C, Hsu W-C, Tan H-r, Zhang XW, Hong Z, Yang Y (2011) Plasmonic polymer tandem solar cell. ACS Nano 5:6210–6217CrossRefPubMedGoogle Scholar
  29. 29.
    Li X, Choy WC, Huo L, Xie F, Sha WE, Ding B, Guo X, Li Y, Hou J, You J (2012) Dual plasmonic nanostructures for high performance inverted organic solar cells. Adv Mater 24:3046–3052CrossRefPubMedGoogle Scholar
  30. 30.
    Luo Q, Zhang C, Deng X, Zhu H, Li Z, Wang Z, Chen X, Huang S (2017) Plasmonic effects of metallic nanoparticles on enhancing performance of perovskite solar cells. ACS Appl Mater Interfaces 9:34821–34832CrossRefPubMedGoogle Scholar
  31. 31.
    Yuan Z, Wu Z, Bai S, Xia Z, Xu W, Song T, Wu H, Xu L, Si J, Jin Y (2015) Hot-electron injection in a sandwiched TiOx–Au–TiOx structure for high-performance planar perovskite solar cells. Adv Energy Mater 5:15000381–15000387Google Scholar
  32. 32.
    Chen C-W, Hsiao S-Y, Chen C-Y, Kang H-W, Huang Z-Y, Lin H-W (2015) Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells. J Mater Chem A 3:9152–9159CrossRefGoogle Scholar
  33. 33.
    Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647CrossRefPubMedGoogle Scholar
  34. 34.
    Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett 13:1764–1769CrossRefPubMedGoogle Scholar
  35. 35.
    Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ (2014) Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci 7:982–988CrossRefGoogle Scholar
  36. 36.
    Kumar MH, Dharani S, Leong WL, Boix PP, Prabhakar RR, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar SG, Mathews N (2014) Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv Mater 26:7122–7127CrossRefPubMedGoogle Scholar
  37. 37.
    Najim AA (2017) Synthesis and characterizations of (δ-Bi2O3) 0.93 (TiO2) 0.07 thin films grown by PLD technique for optoelectronics. Mater Sci Semicond Process 71:378–381CrossRefGoogle Scholar
  38. 38.
    Salih AT, Najim AA, Muhi MA, Gbashi KR (2017) Single-material multilayer ZnS as anti-reflective coating for solar cell applications. Opt Commun 388:84–89CrossRefGoogle Scholar
  39. 39.
    Tripathy SK, Pattanaik A (2016) Optical and electronic properties of some semiconductors from energy gaps. Opt Mater 53:123–133CrossRefGoogle Scholar
  40. 40.
    Herve P, Vandamme L (1994) General relation between refractive index and energy gap in semiconductors. Infrared Phys Technol 35:609–615CrossRefGoogle Scholar
  41. 41.
    Carretero-Palacios S, Calvo M, Míguez H (2015) Absorption enhancement in organic–inorganic halide perovskite films with embedded plasmonic gold nanoparticles. J Phys Chem C 119:18635–18640CrossRefGoogle Scholar
  42. 42.
    Heidarzadeh H (2018) Comprehensive investigation of core-shell dimer nanoparticles size, distance and thicknesses on performance of a hybrid organic-inorganic halide perovskite solar cell. Mater Res Express 5:362801–362808CrossRefGoogle Scholar
  43. 43.
    Futamata M, Maruyama Y, Ishikawa M (2003) Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method. J Phys Chem B 107:7607–7617CrossRefGoogle Scholar
  44. 44.
    Grätzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13:838–842CrossRefPubMedGoogle Scholar
  45. 45.
    Yan W, Li Y, Li Y, Ye S, Liu Z, Wang S, Bian Z, Huang C (2015) High-performance hybrid perovskite solar cells with open circuit voltage dependence on hole-transporting materials. Nano Energy 16:428–437CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of BonabBonabIran
  2. 2.School of Engineering Emerging TechnologiesUniversity of TabrizTabrizIran

Personalised recommendations