, Volume 13, Issue 6, pp 2293–2304 | Cite as

Resonance Behaviors of Localized Surface Plasmon on an Ag/GaN Nano-Grating Interface for Light-Emitting Diode Application

  • Wen-Yen Chang
  • Yang Kuo
  • Yu-Feng Yao
  • Yean-Woei Kiang
  • C. C. YangEmail author


Although a metal grating structure is usually fabricated for momentum-matching a surface plasmon polariton (SPP) with photon, for surface plasmon (SP) coupling application in a light-emitting diode (LED), localized surface plasmon (LSP) on such a structure also plays an important role. We numerically study the LSP resonance behaviors, including the localized resonance behavior of counter-propagating SPP interference, of an Ag grating on GaN. It is found that the resonance behaviors of LSP are controlled not only by the geometry of a grating ridge, but also by grating period, particularly when the grating period is small. In a grating with sharp ridge, large ridge height or width, LSP features of dense charge distributions around the boundaries between ridges and connecting valleys exist. The spectral positions of such LSP features are weakly dependent on the ridge width. Among such features, those with their mode field oscillations across a ridge and hence distributions in an extended space around the ridge can more strongly couple with the quantum wells of an LED. Because of the short coverage range of SPP evanescent field, the localized resonance feature caused by counter-propagating SPP interference has a shorter coupling range. For LED application, an LSP mode with field oscillation across a ridge is preferred.


Localized surface plasmon Surface plasmon polariton Surface plasmon coupling Light-emitting diode Metal grating 



This research was supported by Ministry of Science and Technology, Taiwan, The Republic of China, under the grants of MOST 105-2221-E-002-118, MOST 106-2221-E-002-162, MOST 105-2622-E-002-012-CC2, MOST 105-2221-E-002-159-MY3, and MOST 106-2221-E-002-163-MY3, and by US Air Force Office for Scientific Research under the contract of AOARD-14-4105.


  1. 1.
    Neogi A, Lee CW, Everitt HO, Kuroda T, Tackeuchi A, Yablonvitch E (2002) Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling. Phys Rev B 66(15):153305CrossRefGoogle Scholar
  2. 2.
    Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A (2004) Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater 3(4):601–605CrossRefPubMedGoogle Scholar
  3. 3.
    Sun G, Khurgin JB, Soref RA (2007) Practicable enhancement of spontaneous emission using surface plasmons. Appl Phys Lett 90(11):111107CrossRefGoogle Scholar
  4. 4.
    Sun G, Khurgin JB (2011) Plasmon enhancement of luminescence by metal nanoparticles. IEEE J Sel Top Quantum Electron 17(1):110–118CrossRefGoogle Scholar
  5. 5.
    Tateishi K, Funato M, Kawakami Y, Okamoto K, Tamada K (2015) Highly enhanced green emission from InGaN quantum wells due to surface plasmon resonance on aluminum films. Appl Phys Lett 106(12):121112CrossRefGoogle Scholar
  6. 6.
    Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101(9):093105CrossRefGoogle Scholar
  7. 7.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nature Mater 9(3):205–213CrossRefGoogle Scholar
  8. 8.
    Tsai FJ, Wang JY, Huang JJ, Kiang YW, Yang CC (2010) Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles, opt. Express 18(S2):A207–A220CrossRefGoogle Scholar
  9. 9.
    Lin HY, Kuo Y, Liao CY, Yang CC, Kiang YW (2012) Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures, opt. Express 20(S1):A104–A118CrossRefGoogle Scholar
  10. 10.
    Nootchanat S, Pangdam A, Ishikawa R, Wongravee K, Shinbo K, Kato K, Kaneto F, Ekgasit S, Baba A (2017) Grating-coupled surface plasmon resonance enhanced organic photovoltaic devices induced by blu-ray disc recordable and blu-ray disc grating structures. Nano 9(15):4963–4971Google Scholar
  11. 11.
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106CrossRefPubMedGoogle Scholar
  12. 12.
    Gillibert R, Sarkar M, Bryche JF, Yasukuni R, Moreau J, Besbes M, Barbillon G, Bartenlian B, Canva M, Chapelle ML (2016) Directional surface enhanced Raman scattering on gold nano-gratings. Nanotechnology 27(15):115202CrossRefPubMedGoogle Scholar
  13. 13.
    Yue W, Wang Z, Whittaker J, Lopez-royo F, Yang Y, Zayats AV (2017) Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers. J Mater Chem C 5(16):4075–4084CrossRefGoogle Scholar
  14. 14.
    Shen KC, Chen CY, Chen HL, Huang CF, Kiang YW, Yang CC, Yang YJ (2008) Enhanced and partially polarized output of a light-emitting diode with its InGaN/GaN quantum well coupled with surface plasmons on a metal grating. Appl Phys Lett 93(23):231111CrossRefGoogle Scholar
  15. 15.
    Kwon MK, Kim JY, Kim BH, Park IK, Cho CY, Byeon CC, Park SJ (2008) Surface-plasmon-enhanced light-emitting diodes. Adv Mater 20(7):1253–1257CrossRefGoogle Scholar
  16. 16.
    Cho CY, Lee SJ, Song JH, Hong SH, Lee SM, Cho YH, Park SJ (2011) Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles. Appl Phys Lett 98(5):051106CrossRefGoogle Scholar
  17. 17.
    Kuo Y, Chang WY, Chen HS, Kiang YW, Yang CC (2013) Surface plasmon coupling with a radiating dipole near an ag nanoparticle embedded in GaN. Appl Phys Lett 102(16):161103CrossRefGoogle Scholar
  18. 18.
    Chen HS, Chen CP, Kuo Y, Chou WH, Shen CH, Jung YL, Kiang YW, Yang CC (2013) Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN. Appl Phys Lett 102(4):041108CrossRefGoogle Scholar
  19. 19.
    Lin CH, Hsieh C, Tu CG, Kuo Y, Chen HS, Shih PY, Liao CH, Kiang YW, Yang CC, Lai CH, He GR, Yeh JH, Hsu TC (2014) Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering, opt. Express 22(S3):A842–A856CrossRefGoogle Scholar
  20. 20.
    Lin CH, Su CY, Kuo Y, Chen CH, Yao YF, Shih PY, Chen HS, Hsieh C, Kiang YW, Yang CC (2014) Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles. Appl Phys Lett 105(10):101106CrossRefGoogle Scholar
  21. 21.
    Lin CH, Su CY, Zhu E, Yao YF, Hsieh C, Tu CG, Chen HT, Kiang YW, Yang CC (2015) Modulation behaviors of surface plasmon coupled light-emitting diode. Opt Express 23(6):8150–8161CrossRefPubMedGoogle Scholar
  22. 22.
    Kuo Y, Lin CH, Chen HS, Hsieh C, Tu CG, Shih PY, Chen CH, Liao CH, Su CY, Yao YF, Chen HT, Kiang YW, Yang CC (2015) Surface plasmon coupled light-emitting diode - experimental and numerical studies. Jap J Appl Phys 54(2S):02BD01CrossRefGoogle Scholar
  23. 23.
    Lin CH, Tu CG, Yao YF, Chen SH, Su CY, Chen HT, Kiang YW, Yang CC (2016) High modulation bandwidth of a light-emitting diode with surface plasmon coupling, IEEE Trans. Electron. Dev 63(10):3989–3995Google Scholar
  24. 24.
    Su CY, Lin CH, Yao YF, Liu WH, Su MY, Chiang HC, Tsai MC, Tu CG, Chen HT, Kiang YW, Yang CC (2017) Dependencies of surface plasmon coupling effects on the p-GaN thickness of a thin-p-type light-emitting diode. Opt Express 25(18):21526–21536CrossRefPubMedGoogle Scholar
  25. 25.
    Kottmann JP, Martin OJF (2001) Retardation-induced plasmon resonances in coupled nanoparticles. Opt Lett 26(14):1096–1098CrossRefPubMedGoogle Scholar
  26. 26.
    Knight MW, Fan J, Capasso F, Halas NJ (2010) Influence of excitation and collection geometry on the dark field spectra of individual plasmonic nanostructures. Opt Express 18(3):2579–2587CrossRefPubMedGoogle Scholar
  27. 27.
    Jiang LY, Yin TT, Dong ZG, Hu HL, Liao MY, Allioux D, Tan SJ, Goh XM, Li XY, Yang JKW, Shen ZX (2015) Probing vertical and horizontal plasmonic resonant states in the photoluminescence of gold nanodisks. ACS Photon 2(8):1217–1223CrossRefGoogle Scholar
  28. 28.
    Balci S, Karademir E, Kocabas C (2015) Strong coupling between localized and propagating plasmon polaritons. Opt Express 40(13):3177–3180Google Scholar
  29. 29.
    Zhou W, Suh JY, Hua Y, Odom TW (2012) Hybridization of localized and guided modes in 2D metal-insulator-metal nanocavity arrays. J Phys Chem C 117(6):2541–2546CrossRefGoogle Scholar
  30. 30.
    Du L, Zhang X, Mei T, Yuan X (2010) Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS. Opt Express 18(3):1959–1965CrossRefPubMedGoogle Scholar
  31. 31.
    Chu Y, Crozier KB (2009) Experimental study of the interaction between localized and propagating surface plasmons. Opt Lett 34(3):244–246CrossRefPubMedGoogle Scholar
  32. 32.
    Christ A, Zentgraf T, Tikhodeev SG, Gippius NA, Kuhl J, Giessen H (2006) Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations. Phys Rev B 74(15):155435CrossRefGoogle Scholar
  33. 33.
    Homeyer E, Mattila P, Oksanen J, Sadi T, Nykanen H, Suihkonen S, Symonds C, Tulkki J, Tuomisto F, Sopanen M, Bellessa J (2013) Enhanced light extraction from InGaN/GaN quantum wells with silver gratings. Appl Phys Lett 102(08):081110CrossRefGoogle Scholar
  34. 34.
    Chen H, Fu H, Lu Z, Huang X, Zhao Y (2016) Optical properties of highly polarized InGaN light-emitting diodes modified by plasmonic metallic grating. Opt Express 24(10):A856–A867CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang G, Guo X, Ren FF, Li Y, Liu B, Ye J, Ge H, Xie Z, Zhang R, Tan HH, Jagadish C (2016) High-brightness polarized green InGaN/GaN light-emitting diode structure with Al-coated p-GaN grating. ACS Photonics 3(10):1912–1918CrossRefGoogle Scholar
  36. 36.
    Zhang H, Zhu J, Zhu Z, Jin Y, Li Q, Jin G (2013) Surface-plasmon-enhanced GaN-LED based on a multilayered M-shaped nano-grating. Opt Express 21(11):13492–13501CrossRefPubMedGoogle Scholar
  37. 37.
    Palik ED (1991) Handbook of optical constants of solids. Academic Press, BostonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Photonics and OptoelectronicsNational Taiwan UniversityTaipeiTaiwan
  2. 2.Department of Energy and Refrigerating Air-conditioning EngineeringTung Nan UniversityNew Taipei CityTaiwan
  3. 3.Department of Electrical EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations