, Volume 13, Issue 6, pp 2285–2291 | Cite as

Direct Laser Writing of Gold Nanostructures: Application to Data Storage and Color Nanoprinting

  • Fei Mao
  • Andrew Davis
  • Quang Cong Tong
  • Mai Hoang Luong
  • Chi Thanh Nguyen
  • Isabelle Ledoux-Rak
  • Ngoc Diep LaiEmail author


We have demonstrated a simple way to fabricate gold islands by using the laser direct writing method. The gold nano-islands were formed by the optically induced local thermal effect, resulting from the excitation of a continuous-wave laser beam on gold layer. By moving the laser focusing spot, it was possible to write desired plasmonic texts and images on demand at a nanoscale. By changing the exposure dose, the size of gold nano-islands was controlled, resulted in different colors. This demonstration paves the way for many interesting applications, such as plasmonic data storage and nano-scaled color printing.


Nano-color printing Gold nano-islands Direct laser writing Plasmonics Data storage 


Funding Information

This work is supported by a public grant overseen by the French National Research Agency (ANR) (project: GRATEOM) and by a public grant of Ministry of Science and Technology of Vietnam (project: DTDLCN.01/2017). Maofei acknowledges the fellowship from the China Scholarship Council (CSC project)


  1. 1.
    Zhang S X (2015) Gold nanoparticles: recent advances in the biomedical applications. Cell Biochem Biophys 72:771–776CrossRefPubMedGoogle Scholar
  2. 2.
    Arvizo R, Bhattacharya R, Mukherjee P (2010) Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv 7:753–763CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dykman LA, Khlebtsov NG (2011) Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Nat 3:3455Google Scholar
  4. 4.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  5. 5.
    Pong B, Elim HI, Chong JX, Ji W, Trout BL, Lee JY (2007) New insights on the nanoparticle growth mechanism in the citrate reduction of gold(iii) salt: formation of the Au nanowire intermediate and its nonlinear optical properties. J Phys Chem C 111:6281–6287CrossRefGoogle Scholar
  6. 6.
    Zijlstra P, Chon JWM, Gu M (2009) Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459:410–413CrossRefPubMedGoogle Scholar
  7. 7.
    Taylor AB, Michaux P, Mohsin ASM, Chon JWM (2014) Electron-beam lithography of plasmonic nanorod arrays for multilayered optical storage. Opt Express 22:13234–13243CrossRefPubMedGoogle Scholar
  8. 8.
    Maier SA (2007) Plasmonics: fundamentals and applications. SpringerGoogle Scholar
  9. 9.
    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  10. 10.
    Brust M, Walker M, Bethell W, Schriffin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two phase liquid system. J Chem Soc Chem Commun 0:801–802CrossRefGoogle Scholar
  11. 11.
    Zhi-Chuan X, Cheng-Min S, Cong-Wen X, Tian-Zhong Y, Huai-Ruo Z, Jian-Qi L, Hong-Jun G (2007) Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles. Nanotechnology 18:115608CrossRefGoogle Scholar
  12. 12.
    Shah M, Badwaik V, Kherde Y, Waghwani HK, Modi T, Aguilar ZP, Rodgers H, Hamilton W, Marutharaj T, Webb C, Lawrenz MB, Dakshinamurthy R (2014) Gold nanoparticles: various methods of synthesis and antibacterial applications. Front Biosci 19:1320–1344CrossRefGoogle Scholar
  13. 13.
    Ma F, Hong MH, Tan LS (2008) Laser nano- fabrication of large-area plasmonic structures and surface plasmon resonance tuning by thermal effect. Appl Phys A 93:907CrossRefGoogle Scholar
  14. 14.
    Lee FY, Fung KH, Tang TL, Tam WY, Chan C (2009) Fabrication of gold nano-particle arrays using two-dimensional templates from holographic lithography. Curr Appl Phys 9:820CrossRefGoogle Scholar
  15. 15.
    Tma J, Lyutakov O, Huttel I, Siegel J, Heitz J, Kalachyova Y, vork V (2013) Silver nano- structures prepared by oriented evaporation on laser-patterned poly(methyl methacrylate). J Mater Sci 48:900–905CrossRefGoogle Scholar
  16. 16.
    Do MT, Tong QC, Luong MH, Lidiak A, Ledoux- Rak I, Lai ND (2016) Fabrication and characterization of large-area unpatterned and patterned plasmonic gold nanostructures. J Electron Mater 45:2347–2353CrossRefGoogle Scholar
  17. 17.
    Favazza C, Kalyanaraman R, Sureshkumar R (2006) Robust nanopatterning by laser-induced dewetting of metal nanofilms. Nanotechnology 17:4229–4234CrossRefPubMedGoogle Scholar
  18. 18.
    Berean KJ, Sivan V, Khodasevych I, Boes A, Gaspera ED, Field MR, Mitchell Kalantar-Zadeh GRKA (2016) Laser-induced dewetting for precise local generation of au nanostructures for tunable solar absorption. Adv Opt Mater 4:1247– 1254CrossRefGoogle Scholar
  19. 19.
    He R, Zhou X, Fu Y, Zhang Y (2011) Near-field optical experimental investigation of gold nanohole array. Plasmonics 6:171CrossRefGoogle Scholar
  20. 20.
    Si G, Jiang X, Lv J, Gu Q, Wang F (2014) Fabrication and characterization of well-aligned plasmonic nanopillars with ultrasmall separations. Nanoscale Res Lett 9:299CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Grigorenko AN, Geim AK, Gleeson HF, Zhang Y, Firsov AA, Khrushchev IY, Petrovic J (2005) Nanofabricated media with negative permeability at visible frequencies. Nature 438:355– 338CrossRefGoogle Scholar
  22. 22.
    Steinbruck A, Choi JW, Fasold S, Menzel C, Sergeyev A, Pertsch T, Grange R (2014) Plasmonic heating with near infrared resonance nanodot arrays for multiplexing optofluidic applications. RSC Adv 4:898CrossRefGoogle Scholar
  23. 23.
    Song Y, Elsayed-Ali HE (2010) Aqueous phase Ag nanoparticles with controlled shapes fabricated by a modified nanosphere lithography and their optical properties. Appl Surf Sci 256 :5961CrossRefGoogle Scholar
  24. 24.
    Bechelany M, Maeder X, Riesterer J, Hankache J, Lerose D, Christiansen S, Michler J, Philippe L (2010) Synthesis mechanisms of organized gold nanoparticles: influence of annealing temperature and atmosphere. Crystal Growth Des 10:587CrossRefGoogle Scholar
  25. 25.
    Tong QC, Luong MH, Tran TM, Remmel J, Do MT, Kieu DM, Ghasemi R, Nguyen DT, Lai ND (2017) Realization of desired plasmonic structures via a direct laser writing technique. J Electron Mater 46:3695–3701CrossRefGoogle Scholar
  26. 26.
    Tong QC, Luong MH, Remmel J, Do MT, Nguyen DTT, Lai ND (2017) Rapid direct laser writing of desired plasmonic nanostructures. Opt Lett 42:2382CrossRefPubMedGoogle Scholar
  27. 27.
    Rodriguez C, Pelez R, Afonso C, Riedel S, Leiderer P, Jimenez-Rey D, Climent-Font A (2014) Plasmonic response and transformation mechanism upon single laser exposure of metal discontinuous films. Appl Surf Sci 302:32–36CrossRefGoogle Scholar
  28. 28.
    Axelevitch A, Apter B, Golan G (2013) Simulation and experimental investigation of optical transparency in gold island films. Opt Express 21:4126–4138CrossRefPubMedGoogle Scholar
  29. 29.
    Ozhikandathil J, Packirisamy M (2014) Simulation and implementation of a morphology-tuned gold nano-islands Integrated plasmonic sensor. Sensors 14:10497–10513CrossRefPubMedGoogle Scholar
  30. 30.
    Palik ED (1998) Handbook of optical constants of solids, vol 3. Academic PressGoogle Scholar
  31. 31.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370CrossRefGoogle Scholar
  32. 32.
    Siegel J, Lyutakov O, Rybka V, Kolska Z, Svorck V (2011) Properties of gold nanostructures sputtered on glass. Nanoscale Res Lett 6:1–9Google Scholar
  33. 33.
    Lansaker PC, Gunnarsson K, Roos A, Niklasson G, Granqvist CG (2011) Au thin films deposited on SnO2:In and glass: substrate effects on the optical and electrical properties. Thin Solid Films 519:1930–1933CrossRefGoogle Scholar
  34. 34.
    Do MT, Nguyen TTN, Li Q, Benisty H, Ledoux-Rak I, Lai ND (2013) Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing. Opt Express 21:20964–20973CrossRefPubMedGoogle Scholar
  35. 35.
    Sekkat Z, Kawata S (2014) Laser nanofabrication in photoresists and azopolymers. Laser Photonics Rev 8:1–26CrossRefGoogle Scholar
  36. 36.
    Hohmann JK, Renner M, Waller EH, Von Freymann G (2015) Three-dimensional μ-printing: an enabling technology. Adv Opt Mater 3:1488–1507CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Photonique Quantique et Moléculaire, UMR 8537, École Normale Supérieure de Cachan, CentraleSupélec, CNRSUniversité Paris-SaclayCachanFrance
  2. 2.Institute of Materials ScienceVietnam Academy of Science and TechnologyHanoiVietnam
  3. 3.Department of Physics and AstronomyUniversity of GeorgiaAthensUSA

Personalised recommendations