, Volume 13, Issue 6, pp 2277–2284 | Cite as

Polarization Split Lensing via Polarization and Phase Control with Metasurfaces at Visible Frequencies

  • Qing Zhang
  • Tingdi LiaoEmail author
  • Gongwen Gan
  • Maozhong Li
  • Xudong CuiEmail author


Under the trend of miniaturization and reduction of system complexity, conventional bulky photonic elements are expected to be replaced by new compact and multi-functional photonic elements. In this letter, we propose a birefringent dielectric metasurface (DM) that could provide both phase and polarization control at visible wavelength. Within this platform, we successfully realize a multi-functional polarization split metalens. Such a single metalens can perform the multiple functions of a polarizing resolve imaging system without additional optical elements. Polarization properties of light are resolved, an arbitrarily polarized incident beam is split into two orthogonally polarized beams, in which the transverse magnetic (TM) component and the transverse electric (TE) component are focused on the right and left side of the central axis, respectively. The metalens maintains diffraction-limited focal spots with high focusing efficiencies (above 80%). This multi-functional metalens may found potential applications in polarization-resolved imaging, spectroscopy, and on-chip optoelectronic devices.


Dielectric metasurface Metalens Polarization splitter Nanophotonics 



This work is supported by the fund of Science and Technology on Plasma Physics Laboratory at China Academy of Engineering Physics (6142A04040404).


  1. 1.
    Gevaux D (2008) Optical quantum circuits: to the quantum level. Nat Photonics 2:337–337CrossRefGoogle Scholar
  2. 2.
    Pan JW, Gasparoni S, Ursin R, Weihs G, Zeilinger A (2003) Experimental entanglement purification of arbitrary unknown states. Nature 423:417–422CrossRefPubMedGoogle Scholar
  3. 3.
    Pittman TB, Jacobs BC, Franson JD (2001) Probabilistic quantum logic operations using polarizing beam splitters. Phys Rev A 64:656–656CrossRefGoogle Scholar
  4. 4.
    Politi A, Cryan MJ, Rarity JG, Yu S, O’Brien JL (2008) Silica-on-silicon waveguide quantum circuits. Science 320:646–649CrossRefPubMedGoogle Scholar
  5. 5.
    Holloway CL, Kuester EF, Gordon JA, O’Hara J, Booth J, Smith DR (2012) An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag Mag 54:10–35CrossRefGoogle Scholar
  6. 6.
    Arbabi A (2014) Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun 6:7069CrossRefGoogle Scholar
  7. 7.
    Arbabi E, Arbabi A, Kamali SM, Yu H, Faraon A (2016) Multiwavelength polarization insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3:628–633CrossRefGoogle Scholar
  8. 8.
    Kamali SM, Arbabi E, Arbabi A, Horie Y, Faraon A (2016) Highly tunable elastic dielectric metasurface lenses. Laser Photonics Rev 10:1002–1008CrossRefGoogle Scholar
  9. 9.
    Zhao Y, Alù A (2011) Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys Rev B 84:205428CrossRefGoogle Scholar
  10. 10.
    Yang Y (2014) Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 14:1394–1399CrossRefGoogle Scholar
  11. 11.
    Roberts A, Lin L (2012) Plasmonic quarter-wave plate. Opt Lett 37:1820–1822CrossRefPubMedGoogle Scholar
  12. 12.
    Khorasaninejad M, Ambrosio A, Kanhaiya P, Capasso F (2016) Broadband and chiral binary dielectric meta-holograms. Sci Adv 2:e1501258CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chen WT, Yang KY, Wang CM, Huang YW, Sun G, Chiang I et al (2014) High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 14:225–230CrossRefPubMedGoogle Scholar
  14. 14.
    Huang YW, Chen WT, Tsai WY, Wu PC, Wang CM, Sun G, Tsai DP (2015) Aluminum plasmonic multi-color meta-hologram. Nano Lett 15:3122–3127CrossRefPubMedGoogle Scholar
  15. 15.
    Ma HF, Wang GZ, Kong GS, Cui TJ (2015) Independent controls of differently-polarized reflected waves by anisotropic metasurfaces. Sci Rep 5:9605CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Vahdat-Ahar A, Samiei MHV (2018) Designing a high performance phase gradient metasurface using optical patch antennas with different patch thicknesses. Plasmonics 13:71–80CrossRefGoogle Scholar
  17. 17.
    Zhang Z, Luo J, Song M, Yu H (2017) Polarization filtering and phase controlling metasurfaces based on a metal-insulator-metal grating. Plasmonics 12:1797–1803CrossRefGoogle Scholar
  18. 18.
    Wu PC, Tsai WY, Chen WT, Huang YW, Chen TY, Chen JW, Liao CY, Chu CH, Sun G, Tsai DP (2017) Versatile polarization generation with an aluminum plasmonic metasurface. Nano Lett 17:445–452CrossRefPubMedGoogle Scholar
  19. 19.
    Cheng H, Chen S, Yu P, Liu W, Li Z, Li J et al (2016) Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces. Adv Opt Mater 3:1744–1749CrossRefGoogle Scholar
  20. 20.
    Monticone F, Estakhri NM, Alù A (2013) Full control of nanoscale optical transmission with a composite metascreen. Phys Rev Lett 110:203903CrossRefPubMedGoogle Scholar
  21. 21.
    Ni X, Shalaev VM (2012) Broadband light bending with plasmonic nanoantennas. Science 335:427CrossRefPubMedGoogle Scholar
  22. 22.
    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L (2012) Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater 11:426–431CrossRefPubMedGoogle Scholar
  23. 23.
    Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, Gaburro Z (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334:333–337CrossRefGoogle Scholar
  24. 24.
    Karimi E, Schulz SA, Leon ID, Qassim H, Upham J, Boyd RW (2014) Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci Appl 3:e167CrossRefGoogle Scholar
  25. 25.
    Yue F, Wen D, Xin J, Gerardot BD, Li J, Chen X (2016) Vector vortex beam generation with a single plasmonic metasurface. ACS Photon 3:1558–1563CrossRefGoogle Scholar
  26. 26.
    Silva A, Engheta N (2014) Performing mathematical operations with metamaterials. Science 343:160–163CrossRefPubMedGoogle Scholar
  27. 27.
    Arbabi A, Horie Y, Bagheri M, Faraon A (2015) Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 10:937–943CrossRefPubMedGoogle Scholar
  28. 28.
    Bomzon ZE, Kleiner V, Hasman E (2001) Pancharatnam–berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt Lett 26:1424–1426CrossRefPubMedGoogle Scholar
  29. 29.
    Aieta F, Kats MA, Genevet P, Capasso F (2015) Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347:1342–1345CrossRefPubMedGoogle Scholar
  30. 30.
    Devlin RC, Khorasaninejad M, Chen WT, Oh J, Capasso F (2016) Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc Natl Acad Sci 113:10473–10478CrossRefPubMedGoogle Scholar
  31. 31.
    Khorasaninejad M, Chen WT, Oh J, Capasso F (2016) Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy. Nano Lett 16:3732–3737CrossRefPubMedGoogle Scholar
  32. 32.
    Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso F (2016) Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352:1190–1194CrossRefPubMedGoogle Scholar
  33. 33.
    Khorasaninejad M, Chen WT, Zhu AY, Oh J, Devlin RC, Rousso D (2016) Multispectral chiral imaging with a metalens. Nano Lett 16:4595–4600CrossRefPubMedGoogle Scholar
  34. 34.
    Jellison GE Jr, Modine FA (1996) Parameterization of the optical functions of amorphous materials in the interband region. Appl Phys Lett 69:371–373CrossRefGoogle Scholar
  35. 35.
    Balthasar Mueller JP, Rubin NA, Devlin RC, Groever B, Capasso F (2017) Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 118:113901CrossRefPubMedGoogle Scholar
  36. 36.
    Saleh BEA, Teich MC (1991) Fundamentals of photonics. Wiley, Canada, p 3CrossRefGoogle Scholar
  37. 37.
    Ginn JC, Brener I, Peters DW, Wendt JR, Stevens JO, Hines PF et al (2012) Realizing optical magnetism from dielectric metamaterials. Phys Rev Lett 097402:108Google Scholar
  38. 38.
    Liu S, Sinclair MB, Mahony TS, Jun YC, Campione S, Ginn J, Bender DA, Wendt JR, Ihlefeld JF, Clem PG, Wright JB, Brener I (2014) Optical magnetic mirrors without metals. Optica 1:250–256CrossRefGoogle Scholar
  39. 39.
    Aieta F, Genevet P, Kats MA, Yu N, Blanchard R, Gaburro Z (2012) Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 12:4932–4936CrossRefPubMedGoogle Scholar
  40. 40.
    Ni X, Ishii S, Kildishev AV, Shalaev VM (2013) Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci Appl 2:e72CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Photonic Technology Research and Development CenterQuanzhou Normal UniversityQuanzhouChina
  2. 2.Institute of Chemical MaterialsChina Academy of Engineering PhysicsMianyangChina
  3. 3.State key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduChina
  4. 4.Yunnan KIRO-CH Photonics Co., Ltd.KunmingChina

Personalised recommendations