Advertisement

Plasmonics

, Volume 13, Issue 6, pp 2273–2276 | Cite as

On Faster than Light Photons in Double-Positive Materials

  • Zhong-Yue Wang
Article

Abstract

The subject of FTL (faster-than-light) deserves extra attention since special relativity prohibits the existence of matter and energy that travel faster than \( c=\frac{1}{\sqrt{\varepsilon_0{\mu}_0}}=299,792,458\kern0.5em \mathrm{m}/\mathrm{s} \). A latest proposal is to observe exotic photons in double-negative-materials (DNGs) with less-than-zero permittivity and permeability. In fact, superluminal photons can also be found in specially designed materials have simultaneously positive permittivity and permeability.

Keywords

Relativity Artificial material Light barrier Sommerfeld-Brillouin theory 

PACS

03.30.+p 41.20.Jb 78.67.Pt 12.60.-i 

References

  1. 1.
    Feinberg G (1967) Possibility of faster-than-light particles. Phys Rev 159:1089–1105CrossRefGoogle Scholar
  2. 2.
    Chu S, Wong S (1982) Linear pulse-propagation in an absorbing medium. Phys Rev Lett 48(11):738–741CrossRefGoogle Scholar
  3. 3.
    Wang LJ, Kuzmich A, Dogariu A (2000) Gain-assisted superluminal light propagation. Nature 406(6793):277–279CrossRefPubMedGoogle Scholar
  4. 4.
    Hache A, Poirier L (2002) Long range superluminal pulse propagation in a coaxial photonic crystal. Appl Phys Lett 80(3):518–520CrossRefGoogle Scholar
  5. 5.
    Hartman TE (1962) Tunneling of a wave packet. J Appl Phys 33(12):3427–3433CrossRefGoogle Scholar
  6. 6.
    Enders A, Nimtz G (1992) On superluminal barrier traversal. J.de Physique I 2(9):1693–1698CrossRefGoogle Scholar
  7. 7.
    Steinberg AM, Kwiat PG, Chiao RY (1993) Measurement of the single-photon tunneling time. Phys Rev Lett 71(5):708–711CrossRefPubMedGoogle Scholar
  8. 8.
    Wang ZY (2016) Modern theory for electromagnetic metamaterials. Plasmonics 11(2):503–508CrossRefGoogle Scholar
  9. 9.
    Wang ZY, Wang PY, Xu YR (2011) Crucial experiment to resolve Abraham–Minkowski controversy. Optik 122(22):1994–1996CrossRefGoogle Scholar
  10. 10.
    Feynman RP, Leighton RB, Sands M (1964.) The Feynman lectures on physics (Vol.2, mainly electromagnetism and matter), Addison-Wesley:Reading; 26–2Google Scholar
  11. 11.
    Melia F (2001) Electrodynamics (Chicago lectures in physics). University of Chicago Press, Chicago, p 3Google Scholar
  12. 12.
    Wang ZY (2004) An electrodynamic interpretation for the mechanical relations of photons in media. Galilean electrodynamics 15(4):75–76Google Scholar
  13. 13.
    Schelkunoff SA, Friis HT (1952) Antennas: theory and practice. Wiley, New York, p 584Google Scholar
  14. 14.
    Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech 47(11):2075–2084CrossRefGoogle Scholar
  15. 15.
    Kittel C, Knight WD, Ruerman MA (1973) Mechanics (Berkeley physics course vol.1), 2nd edition, McGRAW-Hill, p358, 365Google Scholar
  16. 16.
    Jackson JD (1998) Classical electrodynamics, 3rd edition, Wiley, New York, p 313Google Scholar
  17. 17.
    Pendry JB, Holden AJ, Stewart WJ, Youngs II (1996) Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett 76(25):4773–4776CrossRefPubMedGoogle Scholar
  18. 18.
    Lorrain P, Corson DR, Lorrain F (1988) Electromagnetic fields and waves, 3rd edition, WH Freeman, New York, pp 546–547Google Scholar
  19. 19.
    Chen HC (1983) Theory of electromagnetic waves: a coordinate-free approach. McGraw-Hill, New York 9.100~ 7.101Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ShanghaiChina

Personalised recommendations