Advertisement

Plasmonics

, Volume 13, Issue 6, pp 2229–2237 | Cite as

Large Circular Dichroism in MDM Plasmonic Metasurface with Subwavelength Crescent Aperture

  • P. Mandal
Article
  • 163 Downloads

Abstract

A metal–dielectric–metal planar chiral plasmonic metasurface is proposed and its circular dichroism (CD) property is numerically studied using finite difference time domain computation. The unit cell of planar plasmonic metasurface consists of crescent apertures that are arranged in a particular orientation. The proposed structure exhibits multiband circular dichroism at near-infrared wavelengths. By changing the orientational symmetry, the structure shows a drastic reduction in the circular dichroism. Passive controlling of orientational symmetry shows a systematic change in the sign of the CD. High incident angular tolerance of the planar chiral plasmonic metasurface (PCPM) to about 15° suggests the proposed structure might be useful for CD spectroscopy.

Keywords

Plasmonic metasurface Crescent apertures Circular dichroism Chirality Modeling and simulation 

References

  1. 1.
    Liao WC, Liao SW, Chen KJ, Hsiao YH, Chang SW, Kuo HC, Shih MH (2016) Optimized spiral metal-gallium-nitride nanowire cavity for ultra-high circular dichroism ultraviolet lasing at room temperature. Sci Rep 6:26578CrossRefGoogle Scholar
  2. 2.
    Gonokami MK, Saito N, Ino Y, Kauranen M, Jefimovs K, Vallius T, Turunen J, Svirko Y (2005) Giant optical activity in quasi-two-dimensional planar nanostructures. Phys Rev Lett 95:227401CrossRefGoogle Scholar
  3. 3.
    Narushima T, Okamoto H (2013) Circular dichroism nano-imaging of two-dimensional chiral metal nanostructures. Phys Chem Chem Phys 15:13805–13809CrossRefGoogle Scholar
  4. 4.
    Ma W, Kuang H, Xu L, Ding L, Xu C, Wang L, Kotov NA (2013) Attomolar DNA detection with chiral nanorods assemblies. Nat Commun 4:2689CrossRefGoogle Scholar
  5. 5.
    Cotrufo M, Osorio CI, Koenderink AF (2016) Spin-dependent emission from arrays of planar chiral nanoantennas due to lattice and localized plasmon resonances. ACS Nano 10:3389–3397CrossRefGoogle Scholar
  6. 6.
    He Y, Larsen G, Li X, Ingram W, Chen F, Zhao Y (2015) Nanoscale conical swiss roll with broadband visible and NIR circular dichroism. Adv Opt Mater 3:342–346CrossRefGoogle Scholar
  7. 7.
    Chen S, Zeuner F, Weismann M, Remeke B, Li G, Valev VK, Cheah KW, Panoiu NC, Zentgrat T, Zhang S (2016) Giant nonlinear optical activity of achiral origin in planar metasurfaces with quadratic and cubic nonlinearities. Adv Mater 28:2992–2999CrossRefGoogle Scholar
  8. 8.
    Wang Z, Jia H, Yao K, Cai W, Chen H, Liu Y (2016) Circular dichroism metamirrors with near−perfect extinction. ACS Photonics 3: 2096–2101Google Scholar
  9. 9.
    Cao T, Li Y, Wei CW, Qiu YM (2017) Numerical study of tunable enhanced chirality in multilayer stack achiral phase-change metamaterials”, Opt Express 25: 9911–9925CrossRefGoogle Scholar
  10. 10.
    Hou Y, Leung HM, Chan CT, Du J, Chan HLW, Lei DY (2016) Ultrabroadband optical superchirality in a 3D stacked-patch plasmonic metamaterial designed by two-step glancing angle deposition. Adv Func Mater 26:7807–7816CrossRefGoogle Scholar
  11. 11.
    Pasini D, Nitti A (2016) Recent advances in sensing using atropoisomeric molecular receptors. Chirality 28:116–123CrossRefGoogle Scholar
  12. 12.
    Schreiber R, Luong N, Fan Z, Kuzyk A, Nickels PC, Zhang T, Smith DM, Yurke B, Kuang W, Govorov AO, Liedl T (2013) Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nat Commun 4:2948CrossRefGoogle Scholar
  13. 13.
    Li Z, Zhu Z, Liu W, Zhou Y, Han B, Gao Y, Tang Z (2012) Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J Am Chem Soc 134:3322–3325CrossRefGoogle Scholar
  14. 14.
    Yu H, Shan X, Wang S, Chen H, Tao N (2014) Plasmonic imaging and detection of single DNA molecules. ACS Nano 8:3427–3433CrossRefGoogle Scholar
  15. 15.
    Novak V, Sebestik J, Bour P (2012) Theoretical modeling of the surface-enhanced Raman optical activity J Chem Theory Comput 8: 1714–1720CrossRefGoogle Scholar
  16. 16.
    Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller EM, Högele A, Simmel FC, Govorov AO, Liedl T (2012) DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483:311–314CrossRefGoogle Scholar
  17. 17.
    Luo Y, Lei DY, Maier SA, Pendry JB (2012) Broadband light harvesting nanostructures robust to edge bluntness. Phys Rev Lett 108:023901CrossRefGoogle Scholar
  18. 18.
    Aubry A, Lei DY, Fernandez-Domínguez AI, Sonnefraud Y, Maier SA, Pendry JB (2010) Plasmonic light-harvesting devices over the whole visible spectrum. Nano Lett 10:2574–2579CrossRefGoogle Scholar
  19. 19.
    Aubry A, Lei DY, Maier SA, Pendry JB (2010) Broadband plasmonic device concentrating the energy at the nanoscale: the crescent-shaped cylinder. Phys Rev B 82:125430CrossRefGoogle Scholar
  20. 20.
    Gansel JK, Thiel M, Rill MS, Decker M, Bade K, Saile V, Freymann GV, Linden S, Wegener M (2009) Gold helix photonic metamaterial as broadband circular polarizer. Science 325:1513–1515CrossRefGoogle Scholar
  21. 21.
    Ji R, Wang SW, Liu X, Chen X, Lu W (2016) Broadband circular polarizers constructed using helix-like chiral metamaterials. Nano 8:14725–14729Google Scholar
  22. 22.
    Frank B, Yin X, Schaferling M, Zhao J, Hein SM, Braun PV, Giessen H (2013) Large-area 3D chiral plasmonic structures. ACS Nano 7:6321–6329CrossRefGoogle Scholar
  23. 23.
    Gibbs JG, Mark AG, Eslami S, Fischer P (2013) Plasmonic nanohelix metamaterials with tailorable giant circular dichroism. Appl Phys Lett 103:213101CrossRefGoogle Scholar
  24. 24.
    Ji R, Wang SW, Liu X, Guo H, Lu W (2016) Hybrid helix metamaterials for giant and ultrawide circular dichroism. ACS Photonics 3:2368–2374CrossRefGoogle Scholar
  25. 25.
    Maoz BM, Moshe AB, Vestler D, Bar-Elli O, Markovich G (2012) Chiroptical effects in planar achiral plasmonic oriented nanohole arrays. Nano Lett 12:2357–2361CrossRefGoogle Scholar
  26. 26.
    Cao T, Wei C, Mao L, Li Y (2014) Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array. Sci Rep 4:7442CrossRefGoogle Scholar
  27. 27.
    He Y, Lawrence K, Ingram W, Zhao Y (2016) Circular dichroism based refractive index sensing using chiral metamaterials. Chem Commun 52:2047–2050CrossRefGoogle Scholar
  28. 28.
    Oh SS, Hess O (2015) Chiral metamaterials: enhancement and control of optical activity and circular dichroism. Nano Convergence 2:24CrossRefGoogle Scholar
  29. 29.
    Decker M, Klein MW, Wegener M, Linden S (2007) Circular dichroism of planar chiral magnetic metamaterials. Opt Lett 32:856–858CrossRefGoogle Scholar
  30. 30.
    Cao T, Wei C, Zhang L (2014) Modeling of multi-band circular dichroism using metal/dielectric/metal achiral metamaterials. Opt Mater Express 4: 1526–1534CrossRefGoogle Scholar
  31. 31.
    Ma X, Huang C, Pu M, Hu C, Feng Q, Luo X (2012) Multi-band circular polarizer using planar spiral metamaterial structure. Opt Express 20:16050–16058CrossRefGoogle Scholar
  32. 32.
    Wang Z, Wang Y, Adamo G, The BH, Wu QYS, Teng J, Sun H (2016) A novel chiral metasurface with controllable circular dichroism induced by coupling localized and propagating modes. Adv Opt Mater 4: 883–888CrossRefGoogle Scholar
  33. 33.
    Zu S, Bao Y, Fang Z (2016) Planar plasmonic chiral nanostructures. Nano 8:3900Google Scholar
  34. 34.
    Narushima T, Hashiyada S, Okamoto H (2014) Nanoscopic study on developing optical activity with increasing chirality for two-dimensional metal nanostructures. ACS Photonics 1:732–738CrossRefGoogle Scholar
  35. 35.
    Cao T, Zhang L, Simpson RE, Wei C, Cryan MJ (2013) Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials. Opt Express 21:27841–27851CrossRefGoogle Scholar
  36. 36.
    Zhao R, Zhang L, Zhou J, Koschny T, Soukoulis CM (2011) Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index. Phys Rev B 83:035105CrossRefGoogle Scholar
  37. 37.
    Kaya S (2014) Circular dichroism from windmill-shaped planar structures operating in mid-infrared regime. Opt Mater Express 4:2332CrossRefGoogle Scholar
  38. 38.
    Papakostas A, Potts A, Bagnall DM, Prosvirnin SL, Coles HJ, Zheludev NI (2003) Optical manifestations of planar chirality. Phys Rev Lett 90:107404CrossRefGoogle Scholar
  39. 39.
    Bai B, Svirko Y, Turunen J, Vallius T (2007) Optical activity in planar chiral metamaterials: theoretical study. Phys Rev A 76:023811CrossRefGoogle Scholar
  40. 40.
    Kan T, Isozaki A, Kanda N, Nemoto N, Konishi K, Kuwata-Gonokami M, Matsumoto K, Shimoyama I (2013) Spiral metamaterial for active tuning of optical activity. Appl Phys Lett 102:221906CrossRefGoogle Scholar
  41. 41.
    Kenanakis G, Zhao R, Katsarakis N, Kafesaki M, Soukoulis CM, Economou EN (2014) Optically controllable THz chiral metamaterials. Opt Express 22:12149–12159CrossRefGoogle Scholar
  42. 42.
    Mutlu M, Akosman AE, Serebryannikov AE, Ozbay E (2011) Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators. Opt Lett 36:1653–1655CrossRefGoogle Scholar
  43. 43.
    Kwon DH, Werner PL, Werner DH (2008) Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation. Opt Express 16:11802–11807CrossRefGoogle Scholar
  44. 44.
    Han C, Leung HM, Chan CT, Tam WY (2015) Giant plasmonic circular dichroism in Ag staircase nanostructures. Opt Express 23:33065–33078CrossRefGoogle Scholar
  45. 45.
    Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy RV, Lapthorn AJ, Kelly SM, Barron LD, Gadegaard N, Kadodwala M (2010) Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotechnol 5:783–787CrossRefGoogle Scholar
  46. 46.
    Xu Z, Xu L, Zhu Y, Ma W, Kuang H, Wang L, Xu C (2012) Chirality based sensor for bisphenol a detection. Chem Commun 48:5760–5762CrossRefGoogle Scholar
  47. 47.
    Nesterov ML, Yin X, Schaferling M, Giessen H, Weiss T (2016) The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy. ACS Photonics 3:578–583CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Petroleum and Energy StudiesDehradunIndia

Personalised recommendations