Advertisement

Plasmonics

, Volume 13, Issue 6, pp 2215–2219 | Cite as

Near-Field Effect of Ag@SnO2 Core-Shell on Dye-Sensitized Solar Cell Performance

  • Sh. Edalati
  • A. Behjat
  • N. Torabi
Article
  • 74 Downloads

Abstract

Noble metal-metal oxide core-shells have been widely investigated as plasmonic antennas to enhance light harvesting efficiency (LHE) in dye-sensitized solar cells. In this study, Ag@SnO2 core-shell nanoparticles were synthesized and used in a dye-sensitized solar cell. SnO2 shell avoids Ag nanoparticles from being corroded by iodide-triiodide and prevents metal nanoparticles charging by free electrons. The structure and absorption spectrum of Ag@SnO2 nanoparticles were characterized by X-ray diffraction (XRD) and UV-visible spectrometry. Photovoltaic measurements revealed enhancements of 44% for both the short circuit current density (Jsc) and the power conversion efficiency (PCE). Diffused reflection spectra and diffused transmittance spectra provide evidence that this enhancement can be attributed to higher absorption in the photo-anode.

Keywords

Dye-sensitized solar cell Plasmonic Silver-tin (II) oxide Core-shell 

References

  1. 1.
    Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Luan X, Wang Y (2014) Plasmon-enhanced performance of dye-sensitized solar cells based on electrodeposited Ag nanoparticles. J Mater Sci Technol 30:1–7CrossRefGoogle Scholar
  3. 3.
    Pillai S, Green M (2010) Plasmonics for photovoltaic applications. Sol Energy Mater Sol Cells 94:1481–1486CrossRefGoogle Scholar
  4. 4.
    Dabirian A, Byranvand MM, Naqavi A, Kharat AN, Taghavinia N (2016) Self-assembled monolayer of wavelength-scale core–shell particles for low-loss plasmonic and broadband light trapping in solar cells. ACS Appl Mater Interfaces 8:247–255CrossRefPubMedGoogle Scholar
  5. 5.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:865CrossRefGoogle Scholar
  6. 6.
    Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793–21800CrossRefPubMedGoogle Scholar
  7. 7.
    Chander N, Khan AF, Thouti E, Sardana SK, Chandrasekhar PS, Dutta V, Komarala, Vamsi K (2014) Size and concentration effects of gold nanoparticles on optical and electrical properties of plasmonic dye sensitized solar cells. Sol Energy 109:11–23CrossRefGoogle Scholar
  8. 8.
    Ihara M, Tanaka K, Sakaki K, Honma I, Yamada K (1997) Enhancement of the absorption coefficient of cis-(NCS)2 bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) dye in dye-sensitized solar cells by a silver island film. J Phys Chem B 101:5153–5157CrossRefGoogle Scholar
  9. 9.
    Ishikawa K, Wen C-J, Yamada K, Okubo T (2004) The photocurrent of dye-sensitized solar cells enhanced by the surface plasmon resonance. J Chem Eng Jpn 37:645–649CrossRefGoogle Scholar
  10. 10.
    Lin S-J, Lee K-C, Wu J-L, Wu J-Y (2012) Plasmon-enhanced photocurrent in dye-sensitized solar cells. Sol Energy 86:2600–2605CrossRefGoogle Scholar
  11. 11.
    Muduli S, Game O, Dhas V, Vijayamohanan K, Bogle KA, Valanoor N, Ogale, Satishchandra B (2012) TiO2–Au plasmonic nanocomposite for enhanced dye-sensitized solar cell (DSSC) performance. Sol Energy 86:1428–1434CrossRefGoogle Scholar
  12. 12.
    Nahm C, Choi H, Kim J, Jung D-R, Kim C, Moon J, Lee B, Park B (2011) The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells. Appl Phys Lett 99:253107–253104CrossRefGoogle Scholar
  13. 13.
    Standridge SD, Schatz GC, Hupp JT (2009) Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2. Langmuir 25:2596–2600CrossRefPubMedGoogle Scholar
  14. 14.
    Wen C, Ishikawa K, Kishima M, Yamada K (2000) Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films. Sol Energy Mater Sol Cells 61:339–351CrossRefGoogle Scholar
  15. 15.
    Brown MD, Suteewong T, Kumar RSS, D’Innocenzo V, Petrozza A, Lee MM, Wiesner U, Snaith HJ (2010) Plasmonic dye-sensitized solar cells using core−shell metal− insulator nanoparticles. Nano Lett 11:438–445CrossRefPubMedGoogle Scholar
  16. 16.
    Choi H, Chen WT, Kamat PV (2012) Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. ACS Nano 6:4418–4427CrossRefPubMedGoogle Scholar
  17. 17.
    Gangishetty MK, Lee KE, Scott RW, Kelly TL (2013) Plasmonic enhancement of dye sensitized solar cells in the red-to-near-infrared region using triangular core–shell Ag@ SiO2 nanoparticles. ACS Appl Mater Interfaces 5:11044–11051CrossRefPubMedGoogle Scholar
  18. 18.
    Guo K, Li M, Fang X, Liu X, Zhu Y, Hu Z, Zhao X (2013) Enhancement of properties of dye-sensitized solar cells by surface plasmon resonance of Ag nanowire core-shell structure in TiO2 films. J Mater Chem A 1:7229–7234CrossRefGoogle Scholar
  19. 19.
    Liu W-L, Lin F-C, Yang Y-C, Huang C-H, Gwo S, Huang MH, Huang J (2013) Influence of morphology on the plasmonic enhancement effect of Au@ TiO2 core-shell nanoparticles in dye-sensitized solar cells. arXiv preprint arXiv:13012019Google Scholar
  20. 20.
    Qi J, Dang X, Hammond PT, Belcher AM (2011) Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@ oxide core–shell nanostructure. ACS Nano 5:7108–7116CrossRefPubMedGoogle Scholar
  21. 21.
    Sheehan SW, Noh H, Brudvig GW, Cao H, Schmuttenmaer CA (2012) Plasmonic enhancement of dye-sensitized solar cells using core–shell–shell nanostructures. J Phys Chem C 117:927–934CrossRefGoogle Scholar
  22. 22.
    Zarick HF, Hurd O, Webb JA, Hungerford C, Erwin WR, Bardhan R (2014) Enhanced efficiency in dye-sensitized solar cells with shape-controlled plasmonic nanostructures. ACS Photonics 1:806–811CrossRefGoogle Scholar
  23. 23.
    Ding B, Lee BJ, Yang M, Jung HS, Lee JK (2011) Surface-plasmon assisted energy conversion in dye-sensitized solar cells. Adv Energy Mater 1:415–421CrossRefGoogle Scholar
  24. 24.
    Jang YH, Jang YJ, Kochuveedu ST, Byun M, Lin Z, Kim DH (2014) Plasmonic dye-sensitized solar cells incorporated with Au-TiO2 nanostructures with tailored configurations. Nano 6:1823–1832Google Scholar
  25. 25.
    Ding IK, Zhu J, Cai W, Moon S-J, Cai N, Wang P, Zakeeruddin SM, Grätzel M, Brongersma ML, Cui Y et al (2011) Plasmonic back reflectors: plasmonic dye-sensitized solar cells. Adv Energy Mater 1:51CrossRefGoogle Scholar
  26. 26.
    Sharifi N, Tajabadi F, Taghavinia N (2014) Recent developments in dye-sensitized solar cells. ChemPhysChem 15:3902–3927CrossRefPubMedGoogle Scholar
  27. 27.
    Malekshahi Byranvand M, Nemati Kharat A, Taghavinia N, Dabirian A (2016) Broadband and low-loss plasmonic light trapping in dye-sensitized solar cells using micrometer-scale rodlike and spherical core–shell plasmonic particles. ACS Appl Mater Interfaces 8:16359–16367CrossRefPubMedGoogle Scholar
  28. 28.
    Tripathy SK, Jo J-N, Song H-M, Yu Y-T (2011) Fabrication and optical study of Ag@ SnO2 core-shell structure nanoparticle thin films. Appl Phys A 104:601–607CrossRefGoogle Scholar
  29. 29.
    Erwin WR, Zarick HF, Talbert EM, Bardhan R (2016) Light trapping in mesoporous solar cells with plasmonic nanostructures. Energy Environ Sci 9:1577–1601CrossRefGoogle Scholar
  30. 30.
    Oldfield G, Ung T, Mulvaney P (2000) Au@ SnO2 core–shell nanocapacitors. Adv Mater 12:1519–1522CrossRefGoogle Scholar
  31. 31.
    Tripathy SK, Kwon H-W, Leem Y-M, Kim B-G, Yu Y-T (2007) Ag@ SnO 2 core–shell structure nanocomposites. Chem Phys Lett 442:101–104CrossRefGoogle Scholar
  32. 32.
    Tripathy SK, Mishra A, Jha SK, Wahab R, Al-Khedhairy AA (2013) Synthesis of thermally stable monodispersed Au@ SnO 2 core–shell structure nanoparticles by a sonochemical technique for detection and degradation of acetaldehyde. Anal Methods 5:1456–1462CrossRefGoogle Scholar
  33. 33.
    Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4:3974–3983CrossRefGoogle Scholar
  34. 34.
    Mulfinger L, Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C (2007) Synthesis and study of silver nanoparticles. J Chem Educ 84:322CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Photonics Research Group, Engineering Research CentreYazd UniversityYazdIran
  2. 2.Atomic and Molecular group, Faculty of PhysicsYazd UniversityYazdIran

Personalised recommendations