Advertisement

Plasmonics

, Volume 13, Issue 6, pp 2197–2204 | Cite as

Investigation of Germanium-Loaded Slot Waveguides for Mid-Infrared Third Harmonic Generation

  • Bingwei Chen
  • Tianye Huang
  • Zhuo Cheng
  • Perry Shum Ping
  • Xuguang Shao
  • Zhifang Wu
  • Xu Wu
  • Kaixuan Ren
  • Songnian Fu
Article
  • 72 Downloads

Abstract

In this paper, we propose a metal-semiconductor-metal slot waveguide (MSMSW) for producing mid-infrared (MIR) light from 10.2 μm by means of third harmonic generation (THG). In this waveguide, the required interaction length is limited by the large Ohmic loss, and therefore, perfect phase-matching condition (PMC) which ensures long coherent length is not necessary. Without the limitation of perfect PMC, the THG interaction mainly occurs between two fundamental modes at pump and harmonic wavelength, respectively leading to high nonlinear coefficient. According to our simulation, the conversion up to ~ 9.1 × 10−4 can be achieved within micron-scale waveguide under 1 W pump power. Furthermore, the waveguide demonstrates both large fabrication error and wavelength shift tolerance. The proposed waveguide can be a promising candidate for MIR light generation with large integration capability.

Keywords

Integrated optics devices Third harmonic generation Nonlinear optical signal processing 

Notes

Funding

This work was supported by the National Natural Science Foundation of China (61605179), the Ministry of Education of Singapore, Academic Research Fund Tier 2 (MOE2014-T2-1-076), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (162301132703, and G1323511665), and the 863 High Technology Plan (2015AA015502).

References

  1. 1.
    Liu PQ, Hoffman AJ, Escarra MD, Franz KJ, Khurgin JB, Dikmelik Y, Wang XJ, Fan JY, Gmachl CF (2010) Highly power-efficient quantum cascade lasers. Nat Photon 7:95–98CrossRefGoogle Scholar
  2. 2.
    Capasso F, Paiella R, Martini R, Colombelli R, Gmachl C, Myers TL, Taubman MS, Williams RM, Bethea CG, Unterrainer K, Hwang HY, Sivco DL, Cho AY, Sergent AM, Liu HC, Whittaker EA (2002) Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission. IEEE J Quantum Electron 38:511–532CrossRefGoogle Scholar
  3. 3.
    Labadie L, Wallner O (2009) Mid-infrared guided optics: a perspective for astronomical instruments. Opt Express 17:1947–1962CrossRefGoogle Scholar
  4. 4.
    Willer U, Saraji M, Khorsandi A, Geiser P, Schade W (2006) Near- and mid-infrared laser monitoring of industrial processes, environment and security applications. Opt Laser Eng 44:699–710CrossRefGoogle Scholar
  5. 5.
    De Marcellis A, Palange E, Janneh M, Rizza C, Ciattoni A, Mengali S (2017) Designoptimisation of plasmonic metasurfaces for mid-infrared high-sensitivity chemical sensing. Plasmonics 12:293–298CrossRefGoogle Scholar
  6. 6.
    Limaj O, Ortolani M, Giliberti V, Di Gaspare A, Mattioli F, Lupi S (2013) Field distribution and quality factor of surface plasmon resonances of metal meshes for mid-infrared sensing. Plasmonics 8:851–858CrossRefGoogle Scholar
  7. 7.
    Yan X, Wang T, Han X, Xiao S, Zhu Y, Wang Y (2017) High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators. Plasmonics 12:1449–1455CrossRefGoogle Scholar
  8. 8.
    Carrig TJ, Schober AM (2010) Mid-infrared lasers. IEEE Photon. J. 2:207–212CrossRefGoogle Scholar
  9. 9.
    Fujita K, Ito A, Hitaka M, Dougakiuchi T, Edamura T (2017) Low-threshold room-temperature continuous-wave operation of a terahertz difference-frequency quantum cascade laser source. Appl Phys Express 10:082102CrossRefGoogle Scholar
  10. 10.
    Liu Q, Wang L, Chen H, Yan P, Gong M (2013) High repetition rate, 4 μm mid-infrared generation with periodically poled magnesium-oxide-doped lithium niobate based optical parametric oscillator pumped by fiber laser. Appl Phys Express 6:052704CrossRefGoogle Scholar
  11. 11.
    Jin L, Yamanaka M, Sonnenschein V, Tomita H, Lguchi T, Sato A, Oh-hara T, Nishizawa N (2017) Highly coherent tunable mid-infrared frequency comb pumped by supercontinuum at 1 μm. Appl Phys Express 10:012503CrossRefGoogle Scholar
  12. 12.
    Fattahi H, Schwarz A, Keiber S, Karpowicz N (2013) Efficient, octave-spanning difference-frequency generation using few-cycle pulses in simple collinear geometry. Opt Lett 38:4216–4219CrossRefGoogle Scholar
  13. 13.
    Lee T, Jung Y, Codemard C, Ding M, Broderick NGR, Brambilla G (2012) Broadband third harmonic generation in tapered silica fibres. Opt Express 20:8503–8511CrossRefGoogle Scholar
  14. 14.
    Corcoran B, Monat C, Grillet C, Moss DJ, Eggleton BJ, White TP, O’Faolain L, Krauss TF (2009) Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat Photon 3:206–210CrossRefGoogle Scholar
  15. 15.
    Walasik W, Renversez G, Rodriguez A (2015) Symmetric plasmonic slot waveguides with a nonlinear dielectric core: bifurcations, size effects, and higher order modes. Plasmonics 10:33–38CrossRefGoogle Scholar
  16. 16.
    Dong J, Wang J, Ma F, Cheng Y, Zhang H, Zhang Z (2015) Recent progresses in integrated nanoplasmonic devices based on propagating surface plasmon polaritons. Plasmonics 10:1841–1852CrossRefGoogle Scholar
  17. 17.
    Sederberg S, Elezzabi AY (2015) Coherent visible-light-generation enhancement in silicon-based nanoplasmonic waveguides via third-harmonic conversion. Phys Rev Lett 114:227401CrossRefGoogle Scholar
  18. 18.
    Huang T, Shao X, Wu Z, Lee T, Wu T, Sun Y, Zhang J, Lam HQ, Brambilla G, Shum PP (2014) Efficient third-harmonic generation from 2 μm in asymmetric plasmonic slot waveguide. IEEE Photon. J. 6:4800607Google Scholar
  19. 19.
    Wu T, Shum PP, Shao X, Huang T, Sun Y (2014) Third harmonic generation from mid-ir to near-ir regions in a phase-matched silicon-silicon-nanocrystal hybrid plasmonic waveguide. Opt Express 22:24367–24377CrossRefGoogle Scholar
  20. 20.
    Wu T, Shum PP, Sun Y, Huang T, Wei L (2016) Third harmonic generation with the effect of nonlinear loss. J. Lightw. Technol. 34:1274–1280CrossRefGoogle Scholar
  21. 21.
    Leonardis FD, Troia B, Soref RA, Passaro VMN (2015) Germanium-on-silicon waveguide engineering for third harmonic generation in the mid-infrared. J Lightwave Technol 33:5103–5113CrossRefGoogle Scholar
  22. 22.
    Jian Z, Hu XK, Yu ZY, Hu W, Xu F, Lu YQ (2010) Nonlinear plasmonic frequency conversion through quasiphase matching. Phys Rev B 82:155107CrossRefGoogle Scholar
  23. 23.
    Ma Y, Eldlio M, Maeda H, Zhou J, Cada M (2016) Plasmonic properties of superconductor–insulator–superconductor waveguide. Appl Phys Express 9:072201CrossRefGoogle Scholar
  24. 24.
    Chen Z, Song X, Jiao R, Duan G, Wang L, Yu L (2015) Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting. IEEE Photon J 7:4801408Google Scholar
  25. 25.
    Leonardis FD, Troia B, Passaro VMN (2014) Mid-IR optical and nonlinear properties of germanium on silicon optical waveguides. J Lightw Technol 32:4349–4359CrossRefGoogle Scholar
  26. 26.
    Hon NK, Soref R, Jalali B (2011) The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared. J Appl Phys 110:011301CrossRefGoogle Scholar
  27. 27.
    Fong NR, Menotti M, Lisicka-Skrzek E, Northfield H, Olivieri A, Tait N, Liscidin M, Berini P (2017) Bloch long-range surface plasmon polaritons on metal stripe waveguides on a multilayer substrate. ACS Photon 4:593–599CrossRefGoogle Scholar
  28. 28.
    Wen J, Romanov SG, Peschel U (2009) Excitation of plasmonic gap waveguides by nanoantennas. Opt Express 17:5925–5932CrossRefGoogle Scholar
  29. 29.
    Andryieuski A, Malureanu R, Biagi G, Holmgaard T, Lavrinenko A (2012) Compact dipole nanoantenna coupler to plasmonic slot waveguide. Opt Lett 37:1124–1126CrossRefGoogle Scholar
  30. 30.
    Komachi Y, Wakaki M, Kanai G (2000) Fabrication of hollow waveguides for CO2 lasers. Appl Opt 39:1555–1560CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical Engineering and Electronic InformationChina University of Geosciences (Wuhan)WuhanChina
  2. 2.Center of Fiber Technology COFT, School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.National Engineering Laboratory of Next Generation Internet Access Networks (NEL-NGIAS), School of Optical and Electronic InformationHuazhong University of Science & TechnologyWuhanChina

Personalised recommendations