, Volume 13, Issue 6, pp 2189–2195 | Cite as

Reconfigurable Plasmonic Logic Gates

  • Elena Vlădescu
  • Daniela DragomanEmail author


Reconfigurable one-, two-, and three-bit plasmonic logic gate configurations have been proposed, which work by covering a straight slot waveguide with materials with tunable dielectric constants, such as graphene. By encoding the logic states in the values of dielectric constants as opposed to different waveguides, the plasmon excitation problems are minimized and the simplified logic gate configurations could be easily implemented.


Plasmonic slot waveguide Logic gates Tunable dielectric constant 


Funding information

This work was supported by a grant of Ministry of Research and Innovation, CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2016-0122, within PNCDI III.


  1. 1.
    Markov IL (2014) Limits on fundamental limits to computation. Nature 512:147–154CrossRefPubMedGoogle Scholar
  2. 2.
    Jones JA, Jaksch D (2012) Quantum information, computation and communication. Cambridge Univ. Press, Cambridge, U.KCrossRefGoogle Scholar
  3. 3.
    Ambs P (2010) Optical computing: a 60-year adventure. Adv Opt Technol 372652:2010Google Scholar
  4. 4.
    Bhattacharya N, van Linden van den Heuvell HB, Spreeuw RJC (2002) Implementation of quantum search algorithm using classical Fourier optics. Phys Rev Lett 88:137901CrossRefPubMedGoogle Scholar
  5. 5.
    Arvind GK, Narang G (2007) Optical implementations, oracle equivalence, and the Bernstein-Vazirani algorithm. J Opt Soc Am B 24:221–225CrossRefGoogle Scholar
  6. 6.
    Birr T, Zywietz U, Chhantyal P, Chichkov BN, Reinhardt C (2015) Ultrafast surface plasmon-polariton logic gates and half-adder. Opt Express 23:31755–31765CrossRefPubMedGoogle Scholar
  7. 7.
    Wei H, Wang Z, Tian X, Käll M, Xu H (2011) Cascaded logic gates in nanophotonic plasmon networks. Nat Commun 2:387CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lu C, Hu X, Yue S, Fu Y, Yang H, Gong Q (2013) Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications. Plasmonics 8:749–754CrossRefGoogle Scholar
  9. 9.
    Fu Y, Hu X, Lu C, Yue S, Yang H, Gong Q (2012) All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett 12:5784–5790CrossRefPubMedGoogle Scholar
  10. 10.
    Bian Y, Gong Q (2014) Compact all-optical interferometric logic gates based on one-dimensional metal-insulator-metal structures. Opt Commun 313:27–35CrossRefGoogle Scholar
  11. 11.
    Cohen M, Zalevsky Z, Shavit R (2013) Towards integrated nanoplasmonic logic circuitry. Nano 5:5442–5449Google Scholar
  12. 12.
    Pan D, Wei H, Xu H (2013) Optical interferometric logic gates based on metal slot waveguide network realizing whole fundamental logic operations. Opt Express 22:9556–9562CrossRefGoogle Scholar
  13. 13.
    Yang X, Hu X, Yang H, Gong Q (2017) Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities. Nano 6:365–376Google Scholar
  14. 14.
    Kocabaş ŞE, Veronis G, Miller DAB, Fan S (2008) Transmission line and equivalent circuit models for plasmonic waveguide components. IEEE J Selected Topics Q Electron 14:1462–1472CrossRefGoogle Scholar
  15. 15.
    Pannipitiya A, Rukhlenko ID, Premaratne M (2011) Analytical modeling of resonant cavities for plasmonic-slot-waveguide junctions. IEEE Photonics J 3:220–233CrossRefGoogle Scholar
  16. 16.
    Nejati H, Beirami A (2012) Theoretical analysis of the characteristic impedance in metal-insulator-metal plasmonic transmission lines. Opt Lett 37:1050–1052CrossRefPubMedGoogle Scholar
  17. 17.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  18. 18.
    Xu F, Das S, Gong Y, Liu Q, Chien H-C, Chiu H-Y, Wu J, Hui R (2015) Complex refractive index tunability of graphene at 1550 nm wavelength. Appl Phys Lett 106:031109CrossRefGoogle Scholar
  19. 19.
    Lu H, Gan X, Mao D, Zhao J (2017) Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides. Photon Res 5:162–167CrossRefGoogle Scholar
  20. 20.
    Eskalen H, Özğan Ş, Alver Ü, Kerli S (2015) Electro-optical properties of liquid crystals composite with zinc oxide nanoparticles. Acta Phys Pol A 127:756–760CrossRefGoogle Scholar
  21. 21.
    Hart WS, Bark AO, Phillips CC (2018) Ultra low-loss super-resolution with extremely anisotropic semiconductor metamaterials. AIP Adv 8:025203CrossRefGoogle Scholar
  22. 22.
    Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8:1086–1101CrossRefPubMedGoogle Scholar
  23. 23.
    Yu R, Pruneri V, de Abajo FJG (2016) Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas. Sci Rep 6(32144)Google Scholar
  24. 24.
    Choi SH, Kim YL, Byun KM (2011) Graphene-on-silver substrates for sensitive surface Plasmon resonance imaging biosensors. Opt Express 19:458–466CrossRefPubMedGoogle Scholar
  25. 25.
    Salihoglu O, Balci S, Kocabas C (2012) Plasmon-polaritons on graphene-metal surface and their use in biosensors. Appl Phys Lett 100:213110CrossRefGoogle Scholar
  26. 26.
    Ding Y, Guan X, Zhu X, Hu H, Bozhevolnyi SI, Oxenløwe LK, Jin KJ, Mortensen NA, Xiao S (2017) Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nano 9:15576Google Scholar
  27. 27.
    Bozhevolnyi SI, Jung J (2008) Scaling for gap plasmon based waveguides. Opt Express 16:2676–2684CrossRefPubMedGoogle Scholar
  28. 28.
    Liu X, Gao J, Yang H, Liu H, Wang X, Shen Z (2016) Near-infrared absorption enhancement mechanism investigations of deep-trench silicon microstructures covered with gold films. Plasmonics 11:1019–1024CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics FacultyUniversity of BucharestBucharestRomania
  2. 2.Academy of Romanian ScientistsBucharestRomania

Personalised recommendations