Advertisement

Plasmonics

, Volume 13, Issue 6, pp 2183–2188 | Cite as

Gold Bowtie-Shaped Dimer Arrays in a Stretchable Substrate with Tunable LSPR

  • Tsan-Wen Lu
  • Peng-Yu Chen
  • Po-Tsung Lee
Article
  • 132 Downloads

Abstract

We proposed and demonstrated a gold bowtie-shaped dimer array semi-buried in a deformable polymer substrate. The wavelength tunability of coupled bonding localized surface plasmon resonance modes with different polarizations was confirmed by stretching simulations and experiments. The tuning operations were reconfigurable and reliable under applied elongations of up to 50%.

Keywords

Localized surface plasmon resonance Tunable plasmonics Bowtie-shaped dimer 

Notes

Acknowledgments

The authors thank the Center for Nano Science and Technology (CNST) of the National Chiao Tung University (NCTU) of Taiwan for the assistance and Prof. Min-Hsiung Shih from the Research Center for Applied Sciences (RCAS), Academia Sinica, Taiwan, for providing the measurement facilities.

References

  1. 1.
    Maier SA (2007) Plasmonics: fundamentals and applications. (Springer)Google Scholar
  2. 2.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193CrossRefPubMedGoogle Scholar
  3. 3.
    Willets KA, Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58(1):267–297CrossRefGoogle Scholar
  4. 4.
    Henzie J, Lee J, Lee MH, Hasan W, Odom TW (2009) Nanofabrication of plasmonic structures. Annu Rev Phys Chem 60(1):147–165CrossRefPubMedGoogle Scholar
  5. 5.
    Wiley BJ, Chen Y, McLellan JM, Xiong Y, Li ZY, Ginger D, Xia Y (2007) Synthesis and optical properties of silver nanobars and nanorice. Nano Lett 7(4):1032–1036CrossRefPubMedGoogle Scholar
  6. 6.
    Nehl CL, Hafner JH (2008) Shape-dependent plasmon resonances of gold nanoparticles. J Mater Chem 18:2415–2419CrossRefGoogle Scholar
  7. 7.
    Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24(10):5233–5237CrossRefPubMedGoogle Scholar
  8. 8.
    Kern AM, Martin OJF (2011) Excitation and reemission of molecules near realistic plasmonic nanostructures. Nano Lett 11(2):482–487CrossRefPubMedGoogle Scholar
  9. 9.
    Dodson S, Haggui M, Bachelot R, Plain J, Li S, Xiong Q (2013) Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae. J Phys Chem Lett 4(3):496–501CrossRefPubMedGoogle Scholar
  10. 10.
    Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461:629–632CrossRefPubMedGoogle Scholar
  11. 11.
    Lu YJ, Kim J, Chen HY, Wu C, Dabidian N, Sanders CE, Wang CY, Lu MY, Li BH, Qiu X, Chang WH, Chen LJ, Shvets G, Shih CK, Gwo S (2012) Plasmonic nanolaser using epitaxially grown silver film. Science 337(6093):450–453CrossRefPubMedGoogle Scholar
  12. 12.
    Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8(11):3983–3988CrossRefPubMedGoogle Scholar
  13. 13.
    Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857CrossRefPubMedGoogle Scholar
  14. 14.
    Shiohara A, Langer J, Polavarapu L, Liz-Marzán LM (2014) Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing. Nano 6:9817–9823Google Scholar
  15. 15.
    Cao J, Suna T, Grattana KTV (2014) Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sens Actuator B-Chem 195:332–351CrossRefGoogle Scholar
  16. 16.
    Zhang W, Huang L, Santschi C, Martin OJF (2010) Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett 10(3):1006–1011CrossRefPubMedGoogle Scholar
  17. 17.
    Lin PT, Chu HY, Lu TW, Lee PT (2014) Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers. Lab Chip 14:4647–4652CrossRefPubMedGoogle Scholar
  18. 18.
    Thacker VV, Herrmann LO, Sigle DO, Zhang T, Liedl T, Baumberg JJ, Keyser UF (2014) DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat Commun 5:3448CrossRefPubMedGoogle Scholar
  19. 19.
    Pilo-Pais M, Watson A, Demers S, LaBean TH, Finkelstein G (2014) Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures. Nano Lett 14(4):2099–2104CrossRefPubMedGoogle Scholar
  20. 20.
    Chen HY, Lin MH, Wang CY, Chang YM, Gwo S (2015) Large-scale hot spot engineering for quantitative SERS at the single-molecule scale. J Am Chem Soc 137(42):13698–13705CrossRefPubMedGoogle Scholar
  21. 21.
    Malynych S, Chumanov G (2003) Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays. J Am Chem Soc 125:2896–2898CrossRefPubMedGoogle Scholar
  22. 22.
    Aksu S, Huang M, Artar A, Yanik AA, Selvarasah S, Dokmeci MR, Altug H (2011) Flexible plasmonics on unconventional and nonplanar substrates. Adv Mater 23:4422–4430CrossRefPubMedGoogle Scholar
  23. 23.
    Mock JJ, Hill RT, Tsai YJ, Chilkoti A, Smith DR (2012) Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation. Nano Lett 12(4):1757–1764CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kahraman M, Daggumati P, Kurtulus O, Seker E, Wachsmann-Hogiu S (2013) Fabrication and characterization of flexible and tunable plasmonic nanostructures. Sci Rep 3:3396CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kessentini S, Barchiesi D, D’Andrea C, Toma A, Guillot N, Fabrizio E, Fazio B, Maragó OM, Gucciardi PG, Chapelle ML (2014) Gold dimer nanoantenna with slanted gap for tunable LSPR and improved SERS. J Phys Chem C 118(6):3209–3219CrossRefGoogle Scholar
  26. 26.
    Walia S, Shah CM, Gutruf P, Nili H, Chowdhury DR, Withayachumnankul W, Bhaskaran M, Sriram S (2015) Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales. Appl Phys Rev 2(1):011303CrossRefGoogle Scholar
  27. 27.
    Hatab NA, Hsueh CH, Gaddis AL, Retterer ST, Li JH, Eres G, Zhang ZY, Gu BH (2010) Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett 10(12):4952–4955CrossRefPubMedGoogle Scholar
  28. 28.
    Jain PK, Huang W, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7(7):2080–2088CrossRefGoogle Scholar
  29. 29.
    Tsai CY, Lin JW, Wu CY, Lin PT, Lu TW, Lee PT (2012) Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode. Nano Lett 12(3):1648–1654CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Photonics, College of Electrical and Computer EngineeringNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations