, Volume 13, Issue 6, pp 2133–2140 | Cite as

Possible Plasmonic Acceleration of LED Modulation for Li-Fi Applications

  • D. V. Guzatov
  • S. V. GaponenkoEmail author
  • H. V. Demir


Emerging LED-based wireless visible light communication (Li-Fi) needs faster LED response to secure desirable modulation rates. Decay rate of an emitter can be enhanced by plasmonics, typically by an expense of efficiency loss because of non-radiative energy transfer. In this paper, metal-enhanced radiative and non-radiative decay rates are shown to be reasonably balanced to get with Ag nanoparticles nearly 100-fold enhancement of the decay rate for a blue LED without loss in overall efficacy. Additionally, gain in intensity occurs for intrinsic quantum yield Q0 < 1. With silver, rate enhancement can be performed through the whole visible. For color-converting phosphors, local field enhancement along with decay rate effects enable 30-fold rate enhancement with gain in efficacy. Since plasmonics always enhances decay rate, it can diminish Auger processes thus extending LED operation currents without efficiency droop. For quantum dot phosphors, plasmonic diminishing of Auger processes will improve photostability.


Wireless visible light communication Li-Fi LED Plasmonics Metal-enhanced electroluminescence Metal-enhanced fluorescence 



The work has been supported by BRFFR-TUBITAK no. F16T/A-010 and TUBITAK no. 115E679, and in part by Singapore National Research Foundation under NRF-NRFI2016-08.


  1. 1.
    Tanaka Y, Haruyama S, Nakagawa M (2000) Wireless optical transmissions with the white colored LED for the wireless home links. In: Proc of the 11th Int Symp Personal, Indoor and Mobile Radio Communications (London), p 1325–1328Google Scholar
  2. 2.
    Komine T, Nakagawa M (2004) Fundamental analysis for visible-light communication system using LED lights. IEEE Trans Consum Electron 50:100–107CrossRefGoogle Scholar
  3. 3.
    Dimitrov S, Haas H (2015) Principles of LED light communications: towards networked Li-Fi. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. 4.
    Tsonev D, Videv S, Haas H (2014) Light fidelity (Li-Fi): towards all-optical networking. Proc SPIE 9007: 900702-1-10Google Scholar
  5. 5.
    Geddes CD (ed) (2010) Metal-enhanced fluorescence. Wiley-VHC, WeinheimGoogle Scholar
  6. 6.
    Klimov VV (2009) Nanoplasmonics. Fizmatlit, MoscowGoogle Scholar
  7. 7.
    Gaponenko SV (2010) Introduction to nanophotonics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. 8.
    Törmä P, Barnes WL (2015) Strong coupling between surface plasmon polaritons and emitters. Rep Progr Phys 78:013901CrossRefGoogle Scholar
  9. 9.
    Klimov VV, Guzatov DV (2007) Optical properties of an atom in the presence of a two-nanosphere cluster. Quant Electron 37:209–216CrossRefGoogle Scholar
  10. 10.
    Guzatov DV, Vaschenko SV, Stankevich VV, Lunevich AY, Glukhov YF, Gaponenko SV (2012) Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment. J Phys Chem C 116:10723–10733CrossRefGoogle Scholar
  11. 11.
    Gaponenko SV (2014) Satyendra Nath Bose and nanophotonics. J Nanophotonics 8:087599CrossRefGoogle Scholar
  12. 12.
    Akselrod GM, Weidman MC, Li Y, Argyropoulos C, Tisdale WA, Mikkelsen MH (2016) Efficient nanosecond photoluminescence from infrared PbS quantum dots coupled to plasmonic nanoantennas. ACS Photonics 3:1741–1746CrossRefGoogle Scholar
  13. 13.
    Cho C-Y, Lee S-J, Song J-H, Hong S-H, Lee S-M, Cho Y-H, Park S-J (2011) Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles. Appl Phys Lett 98:051106CrossRefGoogle Scholar
  14. 14.
    Gu X, Qiu T, Zhang W, Chu PK (2011) Light-emitting diodes enhanced by localized surface plasmon resonance. Nanoscale Res Lett 6:199–210CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yang X, Hernandez-Martinez PL, Dang C, Mutlugun E, Zhang K, Demir HV, Sun XW (2015) Electroluminescence efficiency enhancement in quantum dot light-emitting diodes by embedding a silver nanoisland layer. Adv Opt Mater 3:1439–1445CrossRefGoogle Scholar
  16. 16.
    Kim NY, Hong SH, Kang JW, Myoung N, Yim SY, Jung S, Lee K, Tu CW, Park SJ (2015) Localized surface plasmon-enhanced green quantum dot light-emitting diodes using gold nanoparticles. RSC Adv 5:19624–19629CrossRefGoogle Scholar
  17. 17.
    Pan J, Chen J, Zhao D, Huang Q, Khan Q, Liu X, Tao Z, Zhang Z, Lei W (2016) Surface plasmon-enhanced quantum dot light emitting diodes by incorporating gold nanoparticles. Opt Exp 24:A33–A39CrossRefGoogle Scholar
  18. 18.
    Gaponenko SV, Demir HV, Seassal C, Woggon U (2016) Colloidal nanophotonics: the emerging technology platform. Opt Expr 24:A430–A433CrossRefGoogle Scholar
  19. 19.
    Erdem T, Demir HV (2011) Semiconductor nanocrystals as rare-earth alternatives. Nature Phot 5:126–129CrossRefGoogle Scholar
  20. 20.
    Klimov VV, Letokhov VS (2005) Electric and magnetic dipole transitions of an atom in the presence of spherical dielectric interface. Laser Phys 15:61–73Google Scholar
  21. 21.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  22. 22.
    Sau TK, Rogach AL (eds) (2012) Complex-shaped metal nanoparticles: bottom-up syntheses and applications. John Wiley & Sons, HobokenGoogle Scholar
  23. 23.
    Gandra N, Portz C, Tian L, Tang R, Xu B, Achilefu S, Singamaneni S (2014) Probing distance-dependent plasmon-enhanced near-infrared fluorescence using polyelectrolyte multilayers as dielectric spacers. Angew Chem Int Ed 53:866–870CrossRefGoogle Scholar
  24. 24.
    Lu G, Zhang T, Li W, Hou L, Liu J, Gong Q (2011) Single-molecule spontaneous emission in the vicinity of an individual gold nanorod. J Phys Chem C 115:15822–15832CrossRefGoogle Scholar
  25. 25.
    Mühlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607–1609CrossRefPubMedGoogle Scholar
  26. 26.
    Rogobete L, Kaminski F, Agio M, Sandoghdar V (2007) Design of plasmonic nanoantennae for enhancing spontaneous emission. Opt Lett 32:1623–1625CrossRefPubMedGoogle Scholar
  27. 27.
    Dregely D, Taubert R, Dorfmüller J, Vogelgesang R, Kern K, Giessen H (2011) 3D optical Yagi-Uda nanoantenna array. Nat Commun 2:267–270CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tsakmakidis KL, Boyd RW, Yablonovitch E, Zhang X (2016) Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers. Opt Exp 24:17916–17927CrossRefGoogle Scholar
  29. 29.
    Iveland J, Martinelli L, Peretti J, Speck JS, Weisbuch C (2013) Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. Phys Rev Lett 110:177406CrossRefPubMedGoogle Scholar
  30. 30.
    Su L, Zhang X, Zhang Y, Rogach AL (2016) Recent progress in quantum dot based white light-emitting devices. Top Curr Chem 374:1–25CrossRefGoogle Scholar
  31. 31.
    Gaponenko SV (1998) Optical properties of semiconductor nanocrystals. Cambridge Uni Press, CambridgeCrossRefGoogle Scholar
  32. 32.
    Bae WK, Kwak J, Park JW, Char K, Lee C, Lee S (2009) Highly efficient green-light-emitting diodes based on CdSe@ ZnS quantum dots with a chemical-composition gradient. Adv Mat 21:1690–1694CrossRefGoogle Scholar
  33. 33.
    Chen Y, Vela J, Htoon H, Casson JL, Werder DJ, Bussian DA, Klimov VI, Hollingsworth JA (2008) “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. J Am Chem Soc 130:5026–5027CrossRefPubMedGoogle Scholar
  34. 34.
    Cragg GE, Efros AL (2010) Suppression of Auger processes in confined structures. Nano Lett 10:313–317CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication March/2018

Authors and Affiliations

  • D. V. Guzatov
    • 1
  • S. V. Gaponenko
    • 2
    Email author
  • H. V. Demir
    • 3
    • 4
  1. 1.Yanka Kupala State University of GrodnoGrodnoBelarus
  2. 2.B. I. Stepanov Institute of PhysicsNational Academy of SciencesMinskBelarus
  3. 3.Department of Electrical and Electronics Engineering, Department of Physics, and UNAM–Institute of Materials Science and NanotechnologyBilkent UniversityAnkaraTurkey
  4. 4.LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations