, Volume 13, Issue 6, pp 2125–2132 | Cite as

Tunable Plasmonic Nanolaser Based on Graphene

  • Jun ZhuEmail author
  • Zhengjie Xu
  • Cong Hu


Surface plasmon polariton nanolaser, which can achieve all-optical circuits and optoelectronic integration, is a major research area in nano-optics. We propose a novel tunable nanolaser that combines graphene and traditional metal–dielectric waveguide. We can tune the gain threshold and ejection frequency according to changes in the electronic characteristics of graphene and the structural parameters of the nanolaser. When the Fermi energy level is 0.8 eV, the Q-factor can reach 85, thereby indicating the outstanding performance of the nanolaser in manufacturing. We also found that the gain threshold will stop increasing when carrier mobility is increased to 2000 푐푚2/V∙s. Compared with the conventional silver strip structure, the proposed nanolaser exhibits better performance at h_gap = 0 nm. On that condition, the optimal values of propagation loss and the normalized mode area are 0.13 and 0.0001 dB/μm, respectively. The proposed nanolaser can overcome the challenges of high speed, miniaturization, and integration in optoelectronic integrated technology.


Nanolaser Graphene Tunable 



This work was supported by Guangxi Natural Science Foundation (2017GXNSFAA198261), Innovation Project of Guangxi Graduate Education (XYCSZ2018082, XJGY201807, XJGY201811), Guangxi Scholarship Fund of Guangxi Education Department, Youth backbone teacher growth support plan of Guangxi Normal University (Shi Zheng personnel (2012) 136), and Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ16206).


  1. 1.
    Maier SA (2001) Plasmonics: a route to nanoscale optical devices. Adv Mater 13(19):1501–1505CrossRefGoogle Scholar
  2. 2.
    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91CrossRefGoogle Scholar
  3. 3.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830CrossRefGoogle Scholar
  4. 4.
    Francesca P, Katsuhiro I, Kazushi M (2014) A visible light-driven plasmonic photocatalyst. Light: Science & Applications 3:e133CrossRefGoogle Scholar
  5. 5.
    Ma XC, Dai Y, Yu L, Huang BB Energy transfer in plasmonic photocatalytic composites. Light: Science & Applications 2010(5):e16017Google Scholar
  6. 6.
    Klein MW, Wegener M, Feth N (2007) Experiments on second- and third-harmonic generation from magnetic metamaterials: erratum. Opt Express 15:5238CrossRefPubMedGoogle Scholar
  7. 7.
    Camden JP, Dieringer JA, Zhao J (2008) Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc Chem Res 41:1653–1661CrossRefPubMedGoogle Scholar
  8. 8.
    Vesseur EJR, De Waele R, Kuttge M (2007) Direct observation of Plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy. Nano Lett 7:2843–2846CrossRefPubMedGoogle Scholar
  9. 9.
    Pala RA, White J, Barnard E (2009) Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv Mater 21:3504–3509CrossRefGoogle Scholar
  10. 10.
    Su YH, Ke YF, Cai SL (2012) Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell. Light: Science & Applications 1:e14CrossRefGoogle Scholar
  11. 11.
    Zhang W, Ding F, Li WD (2012) Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting. Nanotechnology 23:225301CrossRefPubMedGoogle Scholar
  12. 12.
    Ding K, Ning CZ (2012) Metallic subwavelength-cavity semiconductor nanolasers. Light: Science & Applications 1:e20CrossRefGoogle Scholar
  13. 13.
    Kabashin AV, Evans P, Pastkovsky S (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871CrossRefPubMedGoogle Scholar
  14. 14.
    Henzie J, Lee MH, Odom TW (2007) Multiscale patterning of plasmonic metamaterials. Nature Nanotechnol 2:549CrossRefGoogle Scholar
  15. 15.
    Bergman DJ, Stockman MI (2003) Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett 90(2):027402/1–027402/4CrossRefGoogle Scholar
  16. 16.
    Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U (2009) Demonstration of spaser-based nanolaser. Nature 460(7259):1110–1112CrossRefGoogle Scholar
  17. 17.
    Oulton RF, Sorger VJ, Thomas Z et al (2009) Plasmon lasers at deep subwavelength scale. Nature 461(7264):629–632CrossRefGoogle Scholar
  18. 18.
    Novoselov KS, Geim AK, Morozov SV (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  19. 19.
    Wolf EL (2016) Graphene: a new paradigm in condensed matter and device physics. Oxford University Press, OxfordGoogle Scholar
  20. 20.
    Foa Torres LEF, Roche S, Charlier J-C (2014) Introduction to graphene-based nanomaterials: from electronic structure to quantum transport. Cambridge University Press, CambridgeGoogle Scholar
  21. 21.
    Wolf EL (2014) Applications of graphene: an overview, springer briefs in materials series. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  22. 22.
    Aoki H, Dresselhaus MS (2013) Physics of graphene, NanoScience and technology. Springer, Berlin/HeidelbergGoogle Scholar
  23. 23.
    Rao CN, Sood AK (2013) Graphene: synthesis, properties, and phenomena. Wiley-VCH, New YorkGoogle Scholar
  24. 24.
    Pereira LFC, Donadio D (2013) Divergence of the thermal conductivity in uniaxially strained graphene. Phys Rev B 87:125424CrossRefGoogle Scholar
  25. 25.
    Xu X, Pereira LFC, Wang Y (2014) Length-dependent thermal conductivity in suspended single-layer graphene. Nat Commun 5:3689CrossRefPubMedGoogle Scholar
  26. 26.
    Sharon M, Sharon M, Tiwari A (2015) Graphene: an introduction to the fundamentals and industrial applications. Advanced Material Series Wiley-Scrivener, New YorkCrossRefGoogle Scholar
  27. 27.
    Warner JH, Schaffel F, Rummeli M, Bachmatiuk A (2012) Graphene: fundamentals and emergent applications. Elsevier, AmsterdamGoogle Scholar
  28. 28.
    Abajo FJG (2013) Plasmons in graphene on uniaxial substrates. Science 339:917CrossRefGoogle Scholar
  29. 29.
    Karimi F, Davoody AH, Knezevic I (2016) Dielectric function and plasmons in graphene: a self-consistent-field calculation within a Markovian master equation formalism. Phys Rev B 93:205421CrossRefGoogle Scholar
  30. 30.
    Karmi F, Knezevic I (2017) Plasmons in graphene nanoribbons. Phys Rev B 96:125417CrossRefGoogle Scholar
  31. 31.
    Bian Y, Zheng Z, Liu Y et al (2011) Coplanar plasmonic nanolasers based on edge-coupled hybrid plasmonic waveguide. IEEE Photon Technol Lett 23(13):1041–1135CrossRefGoogle Scholar
  32. 32.
    Mu J, Chen L, Li X, Huang WP, Kimerling LC, Michel J (2013) Hybrid nano ridge plasmonic polaritons waveguides. Appl Phys Lett 103(13):131107–131107CrossRefGoogle Scholar
  33. 33.
    Dai D, Shi Y, He S et al (2011) Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Opt Express 19:12925–12936CrossRefPubMedGoogle Scholar
  34. 34.
    Yan H, Xia F, Freitag WZM (2011) Infrared spectroscopy of wafer-scale graphene. ACS Nano 5:9854–9860CrossRefPubMedGoogle Scholar
  35. 35.
    Gao W, Shu J, Qiu C et al (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6:7806CrossRefPubMedGoogle Scholar
  36. 36.
    Jablan M, Buljan H, Soljacic M et al (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80:245435CrossRefGoogle Scholar
  37. 37.
    Vasic B, Isic G, Gajic R (2013) Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies. J Appl Phys 113:013110CrossRefGoogle Scholar
  38. 38.
    Avrutsky I (2004) Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain. Phys Rev B 70(15):155416CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Electronic EngineeringGuangxi Normal UniversityGuilinChina
  2. 2.Guangxi Key Laboratory of Automatic Detecting Technology and InstrumentsGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations