, Volume 13, Issue 6, pp 2111–2116 | Cite as

Multi-Band Circular Dichroism Induced by Surface Plasmonic Resonance in Bi-Layer Semi-Ring/Rod Nanostructure

  • Mingdi Zhang
  • Qieni LuEmail author
  • Baozhen Ge


Plasmonic chiroptical effects have received more and more attention for their wide application in the fields of plasmonic sensing, biological detection, and analytical chemistry. In this study, we propose a bi-layer semi-ring/rod nanostructure array. The results calculated by the finite element method show that under the exciting of left-handed circularly polarized light and right-handed circularly polarized light, the nanostructure can produce strong multi-band circular dichroism (CD) signal due to the different coupling modes of electric dipole-electric dipole or magnetic dipole-electric dipole. In addition, the CD signal is strongly dependent on the tilt angle θ, the length L of nanorod, the radius R2, and the distance D. In particular, the adjustment of θ can realize the switching of the CD signal between appear and vanish, and the change of L can achieve manipulation only for a particular resonance mode. The results in this study show that the bi-layer semi-ring/rod array nanostructure provides guidance for the generation of CD using plasmonic nanostructures, and it also shows potential application in spectral anti-crosstalk.


Metal nanostructure arrays Surface plasmon resonance Optical chirality Circular dichroism 



This work was supported by Open Project of State Key Laboratory of Transient Optics and Photonic Technology (No. SKLST201505), and National Natural Science Foundation of China (No. 61077072).

Compliance with Ethical Standards

This research did not involve any human or animal participants.


  1. 1.
    Berova N, Nakanishi K, Woody RW (2000) Circular dichroism: principles and applications[J]. Circ Dichroism Princ ApplGoogle Scholar
  2. 2.
    Valev VK, Baumberg JJ, Sibilia C, Verbiest T (2013) Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook.[J]. Adv Mater 25(18):2517–2534CrossRefGoogle Scholar
  3. 3.
    Wei PP, Tomter AB, RØhr AK et al (2006) Circular dichroism and magnetic circular dichroism studies of the active site of p53R2 from human and mouse: iron binding and nature of the biferrous site relative to other ribonucleotide reductases.[J]. Biochemistry 45(47):14043–14051CrossRefPubMedGoogle Scholar
  4. 4.
    Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism[J]. Biochim Biophys Acta Proteins Proteomics 1751(2):119–139CrossRefGoogle Scholar
  5. 5.
    Li JN, Liu TZ, Zheng HR, Gao F, Dong J, Zhang ZL, Zhang ZY (2013) Plasmon resonances and strong electric field enhancements in side-by-side tangent nanospheroid homodimers[J]. Opt Express 21(14):17176–17185CrossRefPubMedGoogle Scholar
  6. 6.
    Punj D, Regmi R, Devilez A, Plauchu R, Moparthi SB, Stout B, Bonod N, Rigneault H, Wenger J (2015) Self-assembled nanoparticle dimer antennas for plasmonic-enhanced single-molecule fluorescence detection at micromolar concentrations[J]. Acs Photonics 2(8):1099–1107CrossRefGoogle Scholar
  7. 7.
    Jain PK, Eustis S, El-Sayed MA (2006) Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 110(37):18243–18253CrossRefPubMedGoogle Scholar
  8. 8.
    Barrow SJ, Funston AM, Wei X, Mulvaney P (2013) DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures[J]. Nano Today 8(2):138–167CrossRefGoogle Scholar
  9. 9.
    Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy RV, Lapthorn AJ, Kelly SM, Barron LD, Gadegaard N, Kadodwala M (2010) Ultrasensitive detection and characterization of biomolecules using superchiral fields[J]. Nat Nanotechnol 5(11):783–787CrossRefGoogle Scholar
  10. 10.
    Schäferling M, Dregely D, Hentschel M et al (2012) Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures[J]. Physrevx 2(3):4186–4190Google Scholar
  11. 11.
    Tang Y, Sun L, Cohen AE (2013) Chiroptical hot spots in twisted nanowire plasmonic oscillators[J]. Appl Phys Lett 102(4):163901CrossRefGoogle Scholar
  12. 12.
    Schäferling M, Yin X, Engheta N, Giessen H (2014) Helical plasmonic nanostructures as prototypical chiral near-field sources[J]. Acs Photonics 1(6):530–537CrossRefGoogle Scholar
  13. 13.
    Gutsche P, Mäusle R, Burger S (2016) Locally enhanced and tunable optical chirality in helical metamaterials. Photonics 3(4)Google Scholar
  14. 14.
    Wang Y, Deng J, Wang G, Fu T, Qu Y, Zhang Z (2016) Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness[J]. Opt Express 24(3):2307–2317CrossRefPubMedGoogle Scholar
  15. 15.
    Hu J, Zhao X, Li R, Zhu A, Chen L, Lin Y, Cao B, Zhu X, Wang C (2016) Broadband circularly polarizing dichroism with high efficient plasmonic helical surface.[J]. Opt Express 24(10):11023–11032CrossRefPubMedGoogle Scholar
  16. 16.
    Song C, Blaber MG, Zhao G, Zhang P, Fry HC, Schatz GC, Rosi NL (2013) Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures[J]. Nano Lett 13(7):3256–3261CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Qu Y, Huang L, Wang L, Zhang Z (2017) Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure[J]. Opt Express 25(5):5480–5487CrossRefPubMedGoogle Scholar
  18. 18.
    Cao T, Zhang L, Simpson RE, Wei C, Cryan MJ (2013) Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials.[J]. Opt Express 21(23):27841–27851CrossRefGoogle Scholar
  19. 19.
    Eftekhari F, Davis TJ (2012) Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances[J]. Phys Rev B Condens Matter 86(7):3305–3307CrossRefGoogle Scholar
  20. 20.
    Dong J, Zhou J, Koschny T, Soukoulis C (2009) Bi-layer cross chiral structure with strong optical activity and negative refractive index[J]. Opt Express 17(16):14172CrossRefPubMedGoogle Scholar
  21. 21.
    Yin X, Schäferling M, Metzger B, Giessen H (2013) Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model[J]. Nano Lett 13(12):6238–6243CrossRefGoogle Scholar
  22. 22.
    Wang M, Xiong X, Sun WH et al (2016) Switching the electric and magnetic responses in a metamaterial[J]. Phys Rev B 80(20):2665–2668Google Scholar
  23. 23.
    Zu S, Bao Y, Fang Z (2016) Planar plasmonic chiral nanostructures.[J]. Nano 8(7):3900Google Scholar
  24. 24.
    Decker M, Zhao R, Soukoulis CM, Linden S, Wegener M (2010) Twisted split-ring-resonator photonic metamaterial with huge optical activity.[J]. Opt Lett 35(10):1593–1595CrossRefPubMedGoogle Scholar
  25. 25.
    Tian X, Fang Y, Zhang B (2014) Multipolar Fano resonances and Fano-assisted optical activity in silver nanorice heterodimers[J]. Acs Photonics 1(11):1156–1164CrossRefGoogle Scholar
  26. 26.
    Auguié B, Alonsogómez JL, Guerreromartínez A et al (2011) Fingers crossed: optical activity of a chiral dimer of plasmonic nanorods[J]. J Phys Chem Lett 2(8):846–851CrossRefGoogle Scholar
  27. 27.
    Jin JM (2002) The finite element method inelectromagnetics.Wiley IEEE press, New YorkGoogle Scholar
  28. 28.
    Johnson PB, Christy RW (1972) Optical constants of the Noble metals[J]. Physrevb 6(12):4370–4379Google Scholar
  29. 29.
    Wang Y, Wen X, Qu Y, Wang L, Wan R, Zhang Z (2016) Co-occurrence of circular dichroism and asymmetric transmission in twist nanoslit-nanorod arrays.[J]. Opt Express 24(15):16425–16433CrossRefPubMedGoogle Scholar
  30. 30.
    Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia Y (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis[J]. J Phys Chem B 110(32):15666–15675CrossRefPubMedGoogle Scholar
  31. 31.
    Boca S, Rugina D, Pintea A, Barbu-Tudoran L, Astilean S (2011) Flower-shaped gold nanoparticles: synthesis, characterization and their application as SERS-active tags inside living cells.[J]. Nanotechnology 22(5):055702CrossRefPubMedGoogle Scholar
  32. 32.
    Hutter E, Fendler J (2004) Exploitation of localized surface plasmon resonance[J]. Adv Mater 16(19):1685–1706CrossRefGoogle Scholar
  33. 33.
    Hentschel M, Ferry VE, Alivisatos AP (2015) Optical rotation reversal in the optical response of chiral plasmonic nanosystems: the role of Plasmon hybridization[J]. Acs Photonics 2(9):150818134916004CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication March/2018

Authors and Affiliations

  1. 1.School of Precision Instrument & Optoelectronics EngineeringTianjin UniversityTianjinChina
  2. 2.Key Laboratory of Opto-electronics Information Technology, Ministry of EducationTianjin UniversityTianjinChina

Personalised recommendations