Advertisement

Plasmonics

, Volume 13, Issue 6, pp 2099–2109 | Cite as

Broadband Solar Absorption Enhancement in a Silver–Epoxy Nanocomposite for Use as Selective Coating

  • Enrique Barrera
  • Federico González
  • Celso Velásquez
  • María Luisa Ojeda
  • Marciano Sánchez
  • Víctor Rentería-Tapia
Article
  • 106 Downloads

Abstract

This paper reports the optical properties of a black silver–epoxy nanocomposite deposited on copper substrate for use as selective solar absorber. The silver nanoparticles at 3 wt% have been formed in situ in an epoxy resin in presence of organic solvent at room temperature. The nanocomposite exhibited a strong broadband light absorption in the entire visible spectrum. Atomic force microscopy images showed mixtures of spherical and elongated nanoparticles very close together (spacing much smaller than light wavelength) and predominantly clusters of them. The origin of the wide-band absorption is due to the superposition of all excitations of dipole and high-order modes coming from nanoparticles of different diameters (of 10–80 nm) and elongations (length of 80–500 nm). In order to evaluate the solar optical properties, the black silver–epoxy nanocomposite was deposited on copper substrate by the roll coating method and subsequently thermocured in air at 100 °C. The spectral data of the thermocured coatings in air showed significant decrease of the reflectance (< 13%) in the wavelength region from 200 to 1300 nm. The reduction in reflectance is explained in terms of the light trapping by forward scattering in the nanoparticles. The silver–epoxy nanocomposite deposited on a metal substrate for use as solar selective absorber is very attractive due to the easiness of its deposition, very good adherence, low-cost processing, high thermal stability, and low weight of coating per square meter of substrate (1.4 g/m2), and finally, it can be applied over large substrate areas.

Keywords

Silver nanoparticles Selective solar absorber Black coating Broadband enhancement Epoxy resin 

Notes

Acknowledgements

Also special thanks to LDRX–UAMI (T-128) for GARDX measurement and to Samuel Tehuacanero by SEM measurements.

Funding Information

The authors acknowledge financial support from the CONACYT and COECYTJAL–UdG under grant numbers 166032 and 5–2010–1–917, respectively.

References

  1. 1.
    Bermel P, Lee J, Joannopoulos JD, Celanovic I, Soljačić M (2012) Selective solar absorbers. Annu Rev Heat Transfer 15:231–254CrossRefGoogle Scholar
  2. 2.
    Guo CF, Sun T, Cao F, Liu Q, Ren Z (2014) Metallic nanostructures for light trapping in energy-harvesting devices. Light Sci Appl 3:1Google Scholar
  3. 3.
    Amri A, Jiang ZT, Pryor T, Yin CY, Djordjevic S (2014) Developments in the synthesis of flat plate solar selective absorber materials via sol–gel methods: a review. Renew Sust Energ Rev 36:316–328CrossRefGoogle Scholar
  4. 4.
    Kanu SS, Binions R (2010) Thin films for solar control applications. Proc R Soc A 466:19–44CrossRefGoogle Scholar
  5. 5.
    Wijewardane S, Goswami DY (2012) A review on surface control of thermal radiation by paints and coatings for new energy applications. Renew Sust Energ Rev 16:1863–1873CrossRefGoogle Scholar
  6. 6.
    Nishimura M, Ishiguro T (2002) Solar light absorption property of nano-structured silver layer and application to photo-thermal energy conversion coating. Mater Trans 43:2073–2079CrossRefGoogle Scholar
  7. 7.
    Barshilia HC, Kumar P, Rajam KS, Biswas A (2011) Structure and optical properties of Ag–Al2O3 nanocermet solar selective coatings prepared using unbalanced magnetron sputtering. Sol Energy Mater Sol Cells 95:1707–1715CrossRefGoogle Scholar
  8. 8.
    Mishra YK, Mohapatra S, Chakravadhanula VSK, Lalla NP, Zaporojtchenko V, Avasthi DK, Faupel F (2010) Synthesis and characterization of Ag-polymer nanocomposites. J Nanosci Nanotechnol 10:2833–2837CrossRefPubMedGoogle Scholar
  9. 9.
    Takele H, Greve H, Pochstein C, Zaporojtchenko V, Faupel F (2006) Plasmonic properties of Ag nanoclusters in various polymer matrices. Nanotechnology 17:3499–3505CrossRefPubMedGoogle Scholar
  10. 10.
    Idumah CI, Hassan A (2016) Recently emerging trends in thermal conductivity of polymer nanocomposites. Rev Chem Eng 32:413Google Scholar
  11. 11.
    Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862CrossRefPubMedGoogle Scholar
  12. 12.
    Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204CrossRefGoogle Scholar
  13. 13.
    Heilman A (2003) Polymer films with embedded metal nanoparticles. Springer, BerlinCrossRefGoogle Scholar
  14. 14.
    Battie Y, Destouches N, Chassagneux F, Jamon D, Bois L, Moncoffre N, Toulhoat N (2011) Optical properties of silver nanoparticles thermally grown in a mesostructured hybrid silica film. Opt Mat Express 1:1019CrossRefGoogle Scholar
  15. 15.
    Zielinska A, Skwarekb E, Zaleska A, Gazdac M, Hupka J (2009) Preparation of silver nanoparticles with controlled particle size. Procedia Chem 1:1560–1566CrossRefGoogle Scholar
  16. 16.
    Aguilar Y, Rentería VM, Barrera E (2016) Silver nanoparticles in epoxy resin deposited on silicon substrates for light trapping. Plasmonics 11:971CrossRefGoogle Scholar
  17. 17.
    Li X, Choy WCH, Lu H, Sha WE, Ho AHP (2013) Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles. Adv Func Mater 23:2728CrossRefGoogle Scholar
  18. 18.
    Chen X, Jia B, Saha JK, Cai B, Stokes N, Qiao Q, Wang Y, Shi Z, Gu M (2012) Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Lett 12:2187–2192CrossRefPubMedGoogle Scholar
  19. 19.
    Evanoff Jr DD, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6:1221–1231CrossRefGoogle Scholar
  20. 20.
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang X, Chen YL, Liu RS, Tsai DP (2013) Plasmonic photocatalysis. Rep Prog Phys 76:046401CrossRefPubMedGoogle Scholar
  22. 22.
    Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073–3077CrossRefGoogle Scholar
  23. 23.
    Renteria VM, Garcia-Macedo J (2005) Modeling of optical absorption of silver prolate nanoparticles embedded in sol–gel glasses. Mater Chem Phys 91:88–93CrossRefGoogle Scholar
  24. 24.
    Kottmann JP, Martin OJF (2001) Retardation-induced plasmon resonances in coupled nanoparticles. Opt Lett 26:1096–1098CrossRefPubMedGoogle Scholar
  25. 25.
    Hawkinson A, Schatz G, Zou S (2004) Nano 1:77Google Scholar
  26. 26.
    Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487:153–164CrossRefGoogle Scholar
  27. 27.
    Bayer IS, Krishnan KG, Robison R, Loth E, Berry DH, Farrell TE, Crouch JD (2016) Thermal alternating polymer nanocomposite (TAPNC) coating designed to prevent aerodynamic insect fouling. Sci Rep 6:38459CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pastoriza-Santos I, Liz-Marzán LM (1999) Formation and stabilization of silver nanoparticles through reduction by N, N-dimethylformamide. Langmuir 15:948CrossRefGoogle Scholar
  29. 29.
    Kravets VG, Neubeck S, Grigorenko AN, Kravets AF (2010) Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix. Phys Rev B 81:165401CrossRefGoogle Scholar
  30. 30.
    Wang X, Li H, Yu X, Shi X, Liu J (2012) High-performance solution-processed plasmonic Ni nanochain-Al2O3 selective solar thermal absorbers. Appl Phys Lett 101:203109CrossRefGoogle Scholar
  31. 31.
    Tapia VR, Tizapa MS, Mora ER, Martínez MLO, Franco A, Calva EB (2016) Solvent-induced morphological changes of polyhedral silver nanoparticles in epoxy resin. Plasmonics 11:1417–1426CrossRefGoogle Scholar
  32. 32.
    Nikolic G, Zlatkovic S, Cakic M, Cakic S, Lacnjevac C, Rajic Z (2010) Fast Fourier transform IR characterization of epoxy gy systems crosslinked with aliphatic and cycloaliphatic EH polyamine adducts. Sensors 10:684–696CrossRefPubMedGoogle Scholar
  33. 33.
    Yilmaz VT, Topcu Y (1997) Preparation, characterization and thermal reactivity of N,N-dimethylformamide complexes of some transition metal chlorides. Thermochim Acta 307:143–147CrossRefGoogle Scholar
  34. 34.
    Jao TC, Scott I, Steele D (1982) The vibrational spectra of amides—dimethyl formamide. J Mol Spectrosc 92:1–17CrossRefGoogle Scholar
  35. 35.
    Portaccio M, Menale C, Diano N, Serri C, Mita DG, Lepore M (2015) Monitoring production process of cisplatin loaded PLGA nanoparticles by FT-IR microspectroscopy and univariate data analysis. J Appl Polym Sci 132:41305CrossRefGoogle Scholar
  36. 36.
    Dong J, Firestone GE, Bochinski JR, Clarke LI, Gorga RE (2017) In situ curing of liquid epoxy via gold-nanoparticle mediated photothermal heating. Nanotechnology 28:065601CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Enrique Barrera
    • 1
  • Federico González
    • 1
  • Celso Velásquez
    • 2
  • María Luisa Ojeda
    • 2
  • Marciano Sánchez
    • 2
  • Víctor Rentería-Tapia
    • 2
  1. 1.Departamento de Ingeniería de Procesos e HidráulicaUniversidad Autónoma Metropolitana—IztapalapaCiudad de MexicoMexico
  2. 2.Departamento de Ciencias Naturales y Exactas, Centro Universitario de los VallesUniversidad de GuadalajaraAmecaMexico

Personalised recommendations