, Volume 13, Issue 6, pp 2067–2077 | Cite as

Controlling Level Splitting by Strong Coupling of Surface Plasmon Resonances with Rhodamine-6G on a Gold Grating

  • Prince Gupta


Strongly coupled system is known to pose challenges, particularly those involving multitude of levels as in molecules. Surface plasmons offer intense and localized electromagnetic fields, wherein molecules placed in such environment exhibit generic features of strongly coupled system. We demonstrate the control over the splitting of surface plasmon polaritons dispersion branches in strong coupling regime within the absorption and fluorescence bands of Rhodamine-6G molecules placed on top of gold grating structures. The enhanced electromagnetic near-fields of surface plasmon polaritons excited on top of gold gratings have been calculated by numerical simulation and various aspects related to the coupling have been captured by modelling the Rhodamine-6G molecule as a theoretical three level Λ–system which support the experimentally observed variation in splitting with varying periods of gratings. The plasmonically enhanced electromagnetic field plays the role of a control field applied across one leg of the Λ–system. Experimentally measured spectral features, including level splitting and dispersions of the strongly coupled system of molecule-gold grating are consistently described by the model for a variety of samples, with different periodicities, different molecule-grating separations obtained through a dielectric spacer layer, and coupling to higher order diffraction modes of the grating.


Surface plasmon resonace Strong coupling Anti-crossing Surface plasmon near-field Dipole emission 



Prince Gupta acknowledges Professor S. Anantha Ramakrishna and Professor H. Wanare for their insightful comments and discussion and for providing the facilities to perform the experiments as well as numerical simulation.


  1. 1.
    Barnes WL (1998) Fluorescence near interfaces: the role of photonic mode density. J Mod Opt 45(4):661–699CrossRefGoogle Scholar
  2. 2.
    Ford GW, Weber WH (1984) Electromagnetic interactions of molecules with metal surfaces. Phys Rep 113 (4):195–287CrossRefGoogle Scholar
  3. 3.
    Drexhage KH (1970) Influence of a dielectric interface on fluorescence decay time. J Lumin 1:693–701CrossRefGoogle Scholar
  4. 4.
    Mandal P, Anantha Ramakrishna S (2011) Dependence of surface enhanced raman scattering on the plasmonic template periodicity. Opt Lett 36(18):3705–3707CrossRefPubMedGoogle Scholar
  5. 5.
    Mandal P, Gupta P, Nandi A, Anantha Ramakrishna S (2012) Surface enhanced fluorescence and imaging with plasmon near-fields in gold corrugated gratings. J Nanophotonics 6(1):063527–063527CrossRefGoogle Scholar
  6. 6.
    Aouani H, Mahboub O, Devaux E, Rigneault H, Ebbesen TW, Wenger J (2011) Plasmonic antennas for directional sorting of fluorescence emission. Nano Lett 11(6):2400–2406CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang J, Zhang L, Xu W (2012) Surface plasmon polaritons: physics and applications. J Phys D Appl Phys 45(11):113001CrossRefGoogle Scholar
  8. 8.
    Abb M, Muskens OL (2012) Ultrafast plasmonic nanoantenna-ito hybrid switches. Int J Opt 2012Google Scholar
  9. 9.
    Chang DE, Sørensen AS, Demler EA, Lukin MD (2007) A single-photon transistor using nanoscale surface plasmons. Nat Phys 3(11):807–812CrossRefGoogle Scholar
  10. 10.
    Dragoman M, Dragoman D (2008) Plasmonics applications to nanoscale terahertz and optical devices. Prog Quantum Electron 32(1):1–41CrossRefGoogle Scholar
  11. 11.
    Zhai T, Zhang X, Pang Z, Xueqiong S, Liu H, Feng S, Li W (2011) Random laser based on waveguided plasmonic gain channels. Nano Lett 11(10):4295–4298CrossRefPubMedGoogle Scholar
  12. 12.
    Anker JN, Paige Hall W, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nature Mater 7(6):442–453CrossRefGoogle Scholar
  13. 13.
    Berini P, De Leon I (2012) Surface plasmon-polariton amplifiers and lasers. Nat Photonics 6(1):16–24CrossRefGoogle Scholar
  14. 14.
    Törmä P, Barnes WL (2015) Strong coupling between surface plasmon polaritons and emitters: a review. Rep Prog Phys 78(1):013901CrossRefPubMedGoogle Scholar
  15. 15.
    Dintinger J, Klein S, Ebbesen TW (2006) Molecule–surface plas- mon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical switching. Advan Mater 18(10):1267–1270CrossRefGoogle Scholar
  16. 16.
    Hutchison JA, O’Carroll DM, Schwartz T, Genet C, Ebbesen TW (2011) Absorption-induced transparency. Angew Chem Int Ed 50(9):2085–2089CrossRefGoogle Scholar
  17. 17.
    Deng H, Weihs G, Snoke D, Bloch J, Yamamoto Y (2003) Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc Natl Acad Sci 100(26):15318–15323CrossRefPubMedGoogle Scholar
  18. 18.
    Jacek Kasprzak M, Richard S, Kundermann A, Baas P, Jeambrun JMJ, Keeling FM, Marchetti MH, Szymańska R, Andre JL, et al. (2006) Staehli Bose–einstein condensation of exciton polaritons. Nature 443(7110):409–414CrossRefGoogle Scholar
  19. 19.
    Wertz E, Ferrier L, Solnyshkov DD, Senellart P, Bajoni D, Miard A, Lemaître A, Malpuech G, Bloch J (2009) Spontaneous formation of a polariton condensate in a planar gaas microcavity. Appl Phys Lett 95(5):051108CrossRefGoogle Scholar
  20. 20.
    Amo A, Lefrère J, Pigeon S, Adrados C, Ciuti C, Carusotto I, Houdré R, Giacobino E, Bramati A (2009) Superfluidity of polaritons in semiconductor microcavities. Nat Phys 5(11):805–810CrossRefGoogle Scholar
  21. 21.
    Hutchison JA, Schwartz T, Genet C, Devaux E, Ebbesen TW (2012) Modifying chemical landscapes by coupling to vacuum fields. Angew Chem Int Ed 51(7):1592–1596CrossRefGoogle Scholar
  22. 22.
    Rodriguez SRK, Gómez Rivas J (2013) Surface lattice resonances strongly coupled to rhodamine 6g excitons: tuning the plasmon-exciton-polariton mass and composition. Opt Express 21(22):27411–27421CrossRefPubMedGoogle Scholar
  23. 23.
    Dintinger J, Klein S, Bustos F, Barnes WL, Ebbesen TW (2005) Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys Rev B 71(3):035424CrossRefGoogle Scholar
  24. 24.
    Tumkur TU, Zhu G, Noginov MA (2016) Strong coupling of surface plasmon polaritons and ensembles of dye molecules. Opt Express 24(4):3921–3928CrossRefPubMedGoogle Scholar
  25. 25.
    Guo R, Derom S, Väkeväinen AI, van Dijk-Moes RJA, Liljeroth P, Vanmaekelbergh D, Törmä P (2015) Controlling quantum dot emission by plasmonic nanoarrays. Opt Express 23(22):28206–28215CrossRefPubMedGoogle Scholar
  26. 26.
    Memmi H, Benson O, Sadofev S, Kalusniak S (2017) Strong coupling between surface plasmon polaritons and molecular vibrations. Phys Rev Lett 118(12):126802CrossRefPubMedGoogle Scholar
  27. 27.
    Toma M, Toma K, Adam P, Homola J, Knoll W, Dostálek J (2012) Surface plasmon-coupled emission on plasmonic bragg gratings. Opt Express 20(13):14042–14053CrossRefPubMedGoogle Scholar
  28. 28.
    Gupta P, Anantha Ramakrishna S, Wanare H (2016) Strong coupling of surface plasmon resonances to molecules on a gold grating. J Opt 18(10):105001CrossRefGoogle Scholar
  29. 29.
    (2014) Comsol Multiphysics, Finite Element methods.
  30. 30.
    Cheng L, Lipson RH (2010) Interference lithography: a powerful tool for fabricating periodic structures. Laser Photonics Rev 4(4):568–580Google Scholar
  31. 31.
    Gupta P, Mandal P, Anantha Ramakrishna S (2012) Loss compen- sation for surface plasmon resonances on corrugated gold gratings using an amplifying medium. In: 2012 International Conference on Fiber optics and photonics (PHOTONICS). IEEE, pp 1–3Google Scholar
  32. 32.
    Johnson PB, Christy R-W (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations