, Volume 13, Issue 6, pp 2061–2066 | Cite as

Analysis of the Optical Properties of Chiral Au Nanorod Stacks

  • Carolina de Dios
  • Hua Yu Feng
  • Fernando García
  • Alfonso Cebollada
  • Gaspar ArmellesEmail author


We analyze the optical and chirooptical response of two Au nanorods vertically separated and with arbitrary relative in-plane orientation. The use of a simple model of Lorentzian oscillators assigned to the resonances of each individual rod allows analyzing the evolution of the optical properties of this 3D chiral system as a function of relative in-plane orientation, inter-rod separation, and rod dimensions. These results are compared with real physical structures fabricated by multiaxial thermal evaporation through nanohole masks. Despite the simplicity of the theoretical model, the obtained results reproduce the main experimental optical properties of the rod system.


Chirality Plasmonics Optical activity Circular dichroism Gold nanostructures Nanorods 


Funding Information

We acknowledge the financial support from the Spanish MINECO through the project MAT 2014-58860-P. We acknowledge the service from the X-SEM Laboratory at IMM, and funding from MINECO under project CSIC13-4E-1794 with support from EU (FEDER, FSE). We acknowledge the service from MiNa Laboratory at IMM, and funding from CM under project S2013/ICE-2822 (Space-Tec) with support from EU (FEDER, FSE).


  1. 1.
    Guerrero-Martínez A, Alonso-Gómez J, Auguié B et al (2011) From individual to collective chirality in metal nanoparticles. Nano Today 6:381–400. CrossRefGoogle Scholar
  2. 2.
    Valev V, Baumberg J, Sibilia C, Verbiest T (2013) Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv Mater 25:2517–2534. CrossRefPubMedGoogle Scholar
  3. 3.
    Wang Z, Cheng F, Windsor T, Liu Y (2016) Optical chiral metamaterials: a review of the fundamental, fabrication methods and applications. Nanotechnology 27:412001. CrossRefPubMedGoogle Scholar
  4. 4.
    Hentschel M, Schäferling M, Duan X et al (2017) Chiral plasmonics. Sci Adv 3:e1602735. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hendry E, Carpy T, Johnston J et al (2010) Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat Nanotechnol 5:783–787. CrossRefPubMedGoogle Scholar
  6. 6.
    Zhao Y, Askarpour A, Sun L et al (2017) Chirality detection of enantiomers using twisted optical metamaterials. Nat Commun 8:14180. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Azizi A, Ranjbar B, Moghadam T, Bagheri Z (2013) Plasmonic circular dichroism study of DNA–gold nanoparticles bioconjugates. Plasmonics 9:273–281. CrossRefGoogle Scholar
  8. 8.
    Ma W, Kuang H, Wang L et al (2013) Chiral plasmonics of self-assembled nanorod dimers. Sci Rep.
  9. 9.
    Cecconello A, Kahn J, Lu C et al (2016) DNA scaffolds for the dictated assembly of left−/right-handed plasmonic Au NP helices with programmed chiro-optical properties. J Am Chem Soc 138:9895–9901. CrossRefPubMedGoogle Scholar
  10. 10.
    Tan S, Campolongo M, Luo D, Cheng W (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnol 6:268–276. CrossRefPubMedGoogle Scholar
  11. 11.
    Kuzyk A, Yang Y, Duan X et al (2016) A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function. Nat Commun 7:10591. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Esposito M, Tasco V, Cuscunà M et al (2014) Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies. ACS Photonics 2:105–114. CrossRefGoogle Scholar
  13. 13.
    Mark AG, Gibbs JG, Lee T-C, Fischer P (2013) Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat Mater 12:802–807. CrossRefPubMedGoogle Scholar
  14. 14.
    Yeom B, Zhang H, Zhang H et al (2013) Chiral plasmonic nanostructures on achiral nanopillars. Nano Lett 13:5277–5283. CrossRefPubMedGoogle Scholar
  15. 15.
    He Y, Larsen GK, Ingram W, Zhao Y (2014) Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers. Nano Lett 14:1976–1981. CrossRefPubMedGoogle Scholar
  16. 16.
    Hentschel M, Schäferling M, Weiss T, Liu N, Giessen H (2012) Three dimensional plasmonic oligomers. Nano Lett 12:2542–2547. CrossRefPubMedGoogle Scholar
  17. 17.
    Zhao Y, Belkin M, Alù A (2012) Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat Commun 3:870. CrossRefPubMedGoogle Scholar
  18. 18.
    Yin X, Schäferling M, Metzger B, Giessen H (2013) Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model. Nano Lett 13:6238–6243. CrossRefPubMedGoogle Scholar
  19. 19.
    Ogier R, Fang Y, Svedendahl M, Johansson P, Käll M (2014) Macroscopic layers of chiral plasmonic nanoparticle oligomers from colloidal lithography. ACS Photonics 1:1074–1081. CrossRefGoogle Scholar
  20. 20.
    Auguié B, Alonso-Gómez J, Guerrero-Martínez A, Liz-Marzán L (2011) Fingers crossed: optical activity of a chiral dimer of plasmonic nanorods. J Phys Chem Lett 2:846–851. CrossRefPubMedGoogle Scholar
  21. 21.
    Querejeta-Fernández A, Chauve G, Methot M et al (2014) Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J Am Chem Soc 136:4788–4793. CrossRefPubMedGoogle Scholar
  22. 22.
    Wang L, Deng L (2014) Plasmonic circular dichroism of the helical nanosphere assemblies and the helical nanoellipsoid assemblies. Plasmonics 10:399–409. CrossRefGoogle Scholar
  23. 23.
    Lan X, Lu X, Shen C et al (2015) Au nanorod helical superstructures with designed chirality. J Am Chem Soc 137:457–462. CrossRefPubMedGoogle Scholar
  24. 24.
    Hor Y, Phua W, Khoo E (2016) Chirality switching via rotation of bilayer fourfold meta-structure. Plasmonics 12:83–87. CrossRefGoogle Scholar
  25. 25.
    Palik E, Ghosh G (1998) Handbook of optical constants of solids five-volume set. Academic Press, LondonGoogle Scholar
  26. 26.
    Fredriksson H, Alaverdyan Y, Dmitriev A et al (2007) Hole–mask colloidal lithography. Adv Mater 19:4297–4302. CrossRefGoogle Scholar
  27. 27.
    Zhao J, Frank B, Neubrech F et al (2014) Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: a versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials. Beilstein J Nanotechnol 5:577–586. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Armelles G, Cebollada A, García F et al (2016) Far- and near-field broad-band magneto-optical functionalities using magnetoplasmonic nanorods. ACS Photonics 3:2427–2433. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Carolina de Dios
    • 1
  • Hua Yu Feng
    • 1
  • Fernando García
    • 1
  • Alfonso Cebollada
    • 1
  • Gaspar Armelles
    • 1
    Email author
  1. 1.IMN-Instituto de Micro y Nanotecnología de Madrid (CNM-CSIC)Isaac Newton 8, PTMMadridSpain

Personalised recommendations