Advertisement

Plasmonics

, Volume 13, Issue 6, pp 2029–2035 | Cite as

A Hybrid Plasmonic Modulator Based on Graphene on Channel Plasmonic Polariton Waveguide

  • Pengfei Zheng
  • Huimin Yang
  • Meiyong Fan
  • Guohua Hu
  • Ruohu Zhang
  • Binfeng Yun
  • Yiping Cui
Article

Abstract

A hybrid plasmonic modulator based on graphene on channel plasmonic polariton waveguide was proposed to overcome the difficulty in achieving high-speed modulation on the nanometric plasmonic waveguide platform. The extinction ratio and the figure of merit of the proposed modulator were analyzed in detail, and a tradeoff between them was found due to the intrinsic loss of the channel plasmonic polariton waveguide. And an optimized hybrid plasmonic modulator with large modulation bandwidth of 0.662 THz, low power consumption of 118.7 fJ/bit, and short device length of 7.680 μm was obtained theoretically. In addition, the proposed hybrid plasmonic modulator based on graphene on channel plasmonic polariton waveguide is easy to fabricate and provides a potential solution for the high-speed plasmonic modulator.

Keywords

Plasmonics Waveguide devices Modulators 

Notes

Funding

This work was supported by the National Science Foundation of Jiangsu Province Grant No. BK 20161429.

References

  1. 1.
    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91CrossRefGoogle Scholar
  2. 2.
    Yuan G, Wang P, Lu Y, Ming H (2009) Multimode interference splitter based on dielectric-loaded surface plasmon polariton waveguides. Opt Express 17(15):12594–12600CrossRefGoogle Scholar
  3. 3.
    Park J, Kim H, Lee B (2008) High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating. Opt Express 16(1):413–425CrossRefGoogle Scholar
  4. 4.
    Lin XS, Huang XG (2008) Tooth-shaped plasmonic waveguide filters with nanometric sizes. Opt Lett 33(23):2874–2876CrossRefGoogle Scholar
  5. 5.
    Tao J, Huang X, Lin X, Chen J, Zhang Q, Jin X (2010) Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters. J Opt Soc Am B 27(2):323–327CrossRefGoogle Scholar
  6. 6.
    Lu H, Liu X, Mao D, Wang L, Gong Y (2010) Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt Express 18(17):17922–17927CrossRefGoogle Scholar
  7. 7.
    Nikolajsen T, Leosson K, Bozhevolnyi SI (2004) Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl Phys Lett 85:5833–5835CrossRefGoogle Scholar
  8. 8.
    Nikolajsen T, Leosson K, Bozhevolnyi SI (2005) In-line extinction modulator based on long-range surface plasmon polaritons. Opt Commun 244:455–459CrossRefGoogle Scholar
  9. 9.
    Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder DL, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton LR, Hafner C, Leuthold J (2015) All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nat Photonics 9:525–528CrossRefGoogle Scholar
  10. 10.
    Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler PC, Li J, Palmer R, Korn D, Muehlbrandt S, Van Thourhout D, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J (2014) High-speed plasmonic phase modulators. Nat Photonics 8(3):229–233CrossRefGoogle Scholar
  11. 11.
    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X (2011) A graphene-based broadband optical modulator. Nature 474(7349):64–67CrossRefGoogle Scholar
  12. 12.
    Liu M, Yin X, Zhang X (2012) Double-layer graphene optical modulator. Nano Lett 12(3):1482–1485CrossRefGoogle Scholar
  13. 13.
    Xu C, Jin Y, Yang L, Yang J, Jiang X (2012) Characteristics of electro-refractive modulating based on graphene-oxide-silicon waveguide. Opt Express 20(20):22398–22405CrossRefGoogle Scholar
  14. 14.
    Yang L, Hu T, Hao R, Qiu C, Xu C, Yu H, Xu Y, Jiang X, Li Y, Yang J (2013) Low-chirp high-extinction-ratio modulator based on graphene-silicon waveguide. Opt Lett 38(14):2512–2515CrossRefGoogle Scholar
  15. 15.
    Ding Y, Zhu X, Xiao S, Hu H, Frandsen LH, Mortensen NA, Yvind K (2015) Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator. Nano Lett 15(7):4393–4400CrossRefGoogle Scholar
  16. 16.
    Phare CT, Daniel Lee Y-H, Cardenas J, Lipson M (2015) Graphene electro-optic modulator with 30 GHz bandwidth. Nat Photonics 9(8):511–514CrossRefGoogle Scholar
  17. 17.
    Du W, Li EP, Hao R (2014) Tunability analysis of a graphene-embedded ring modulator. IEEE Photon Technol Lett 26(20):2008–2011CrossRefGoogle Scholar
  18. 18.
    Huang B, Lu W, Li X, Wang J, Liu Z (2016) Waveguide-coupled hybrid plasmonic modulator based on graphene. Appl Opt 55:5598–5602CrossRefGoogle Scholar
  19. 19.
    Peng X, Hao R, Ye Z, Qin P, Chen W, Chen H, Jin X, Yang D, Li E (2017) Highly efficient graphene-on-gap modulator by employing the hybrid plasmonic effect. Opt Lett 42:1736–1739CrossRefGoogle Scholar
  20. 20.
    Falkovsky LA (2008) Optical properties of graphene and IV–VI semiconductors. Physics-Uspekhi 51(9):887–897CrossRefGoogle Scholar
  21. 21.
    Kwon MS (2014) Discussion of the epsilon-near-zero effect of graphene in a horizontal slot waveguide. IEEE Photonics J 6(3):1–9CrossRefGoogle Scholar
  22. 22.
    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen YR (2008) (5873) Gate-variable optical transitions in graphene. Science 320:206–209CrossRefGoogle Scholar
  23. 23.
    Bozhevolnyi S (2006) Effective-index modeling of channel plasmon polaritons. Opt Express 14:9467–9476CrossRefGoogle Scholar
  24. 24.
    Bozhevolnyi S, Jung J (2008) Scaling for gap plasmon based waveguides. Opt Express 16:2676–2684CrossRefGoogle Scholar
  25. 25.
    Shiramin LA, Thourhout VD (2017) Graphene modulators and switches integrated on silicon and silicon nitride waveguide. IEEE J S Top Quant 23(1):1–7CrossRefGoogle Scholar
  26. 26.
    Xia J, Chen F, Li J, Tao N (2009) Measurement of the quantum capacitance of graphene. Nat Nanotechnol 4(8):505–509CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Photonics CenterSoutheast UniversityNanjingChina

Personalised recommendations