, Volume 13, Issue 6, pp 2015–2020 | Cite as

Toward Filtering Aspects of Silver Nanowire-Based Hyperbolic Metamaterial

  • M. A. Baqir
  • P. K. ChoudhuryEmail author


The theme of paper is pivoted to the spectral characteristics of silver nanowire hyperbolic metamaterial (NWHMM)-based filter. The light waves were allowed to fall upon the NWHMM surface comprised of periodic arrangement of the array of sub-wavelength-sized silver nanowires of circular cross-section immersed in silicon dioxide (SiO2) medium; the SiO2 layer being fabricated over silicon (Si) substrate. The reflection spectra were extracted in the 400–1400 nm wavelength range corresponding to different operational conditions. It was observed that the reflectance characteristics greatly depend upon the angle of incidence, diameter of silver nanowires, and NWHMM layer thickness. Certain operational conditions exhibit the structure to be useful for wideband filtering applications.


Metamaterials Metamaterial-based filters Hyperbolic metamaterials Plasmonics Complex mediums Photonic structures 



The authors are thankful to the anonymous reviewer for making constructive criticisms on the content; those essentially helped to raise the status of the manuscript. Also, one of the authors (PKC) acknowledges partial financial supports to conduct the work through the grant GGP-2017-014 provided by the Universiti Kebangsaan Malaysia.


  1. 1.
    Wegener M (2013) Metamaterial beyond optics. Science 342:939–940CrossRefPubMedGoogle Scholar
  2. 2.
    Poddubny A, Irosh I, Belov P, Kivshar Y (2013) Hyperbolic metamaterials. Nature Photon 7:948–957CrossRefGoogle Scholar
  3. 3.
    Poddubny AN, Belov PA, Kivshar YS (2011) Spontaneous radiation of finite-size dipole emitter in hyperbolic metamaterial. Phys Rev A 84:Article 023807CrossRefGoogle Scholar
  4. 4.
    Tumkur TA, Gu L, Kitur JK, Narimanov EE, Noginov MA (2012) Control of absorption with hyperbolic metamaterials. Appl Phys Lett 100:–161103-1, 161103-3CrossRefGoogle Scholar
  5. 5.
    Lu D, Khan JJ, Fullerton EE, Liu Z (2014) Enhancing spontaneous emission rate of molecules using nanopatterned multilayered hyperbolic metamaterials. Nature Nantechnol 9:48–53CrossRefGoogle Scholar
  6. 6.
    Lei G, Livenere JE, Zhu G, Tumkur TU, Hu H, Cortes CL, Jacob Z, Prokes SM, Noginov MA (2014) Angular distribution of emission from hyperbolic metamaterials. Sci Repts 4:7327-1–7327-5Google Scholar
  7. 7.
    Well B, Kudyshev ZA, Litchinitser N, Podolskiy VA (2017) Nonlocal effects in transition hyperbolic metamaterials. ACS Photon 4:2470–2478CrossRefGoogle Scholar
  8. 8.
    Baqir MA, Choudhury PK (2017) Hyperbolic metamaterial-based UV absorber. IEEE Phot Technol Lett 29:1548–1551CrossRefGoogle Scholar
  9. 9.
    Yermakov OY, Ovcharenko AI, Bogdanov AA, Iorsh IV, Bliokh KY, Kivshar YS (2016) Spin control of light with hyperbolic metasurfaces. Phys Rev B 94:Article 075446CrossRefGoogle Scholar
  10. 10.
    Silveirinha MG (2006) Nonlocal homogenization model for a periodic array of ε-negative rods. Phys Rev E 73:Article 046612CrossRefGoogle Scholar
  11. 11.
    A.J. Kerman, E.A. Dauler, and W.E. Keicher, Kinetic-inductance-limited reset time of superconducting nanowire photon counters, Appl Phys Lett, vol. 88, pp. 111116-1−111116-3, 2006Google Scholar
  12. 12.
    Wells BM, Zayats AV, and Podolskiy VA (2012) Nonlocal response of plasmonic nanorod metamaterials, Proc. of the 2012 Conf. on Lasers and Electro-Optics (CLEO),
  13. 13.
    Cui Y, Fung KH, Xu J, Ma H, Jin Y, He S, Fang NX (2012) Ultrabroadband light absorption light absorption by a sawtooth anisotropic metamaterial slab. ACS Nano Lett 12:1443–1447CrossRefGoogle Scholar
  14. 14.
    Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2:517CrossRefPubMedGoogle Scholar
  15. 15.
    Ghasemi M, Baqir MA, Choudhury PK (2016) On the metasurface-based comb filters. IEEE Photon Technol Lett 28:1100–1103CrossRefGoogle Scholar
  16. 16.
    Ghasemi M, Choudhury PK (2016) Nanostructured concentric gold ring resonator-based metasurface filter device. Optik – Int J Light and Electron Opt 127:9932–9936CrossRefGoogle Scholar
  17. 17.
    Ghasemi M, Choudhury PK, Baqir MA, Mohamed MA, Zain ARM, Majlis BY (2017) Metamaterial absorber comprising chromium–gold nanorods-based columnar thin films. J Nanophoton 11:043505-1–043505-10CrossRefGoogle Scholar
  18. 18.
    Moghaddas S, Ghasemi M, Choudhury PK, Majlis BY Engineered metasurface of gold funnels for terahertz wave filtering. Plasmonics. CrossRefGoogle Scholar
  19. 19.
    Rakic AD, Djurisic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271–5283CrossRefPubMedGoogle Scholar
  20. 20.
    Liu Y, Bartal G, Zhang X (2008) All-angle negative refraction and imaging in a bulk medium made of metallic nanowire in the visible region. Opt Express 16:15439–15448CrossRefPubMedGoogle Scholar
  21. 21.
    Madani A, Entezar SR, Namdar A, Tajalli H (2012) Influence of the orientation of optical axis on the transmission properties of one-dimensional photonic crystals containing uniaxial indefinite metamaterial. J Opt Soc Am B 10:2910–2914CrossRefGoogle Scholar
  22. 22.
    Vasilantonakis N, Wurtz GA, Podolskiy VA, Zayats AV (2015) Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement. Opt Express 23:14329–14343CrossRefPubMedGoogle Scholar
  23. 23.
    Abbas F, Faryad MA (2017) A highly sensitive multiplasmonic sensor using hyperbolic chiral sculptured thin films. J Appl Phys 122:Article 173104CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringCOMSATS Institute of Information TechnologySahiwalPakistan
  2. 2.Institute of Microengineering and NanoelectronicsUniversiti Kebangsaan Malaysia, UKMBangiMalaysia

Personalised recommendations