Advertisement

Plasmonics

, Volume 13, Issue 6, pp 2001–2013 | Cite as

All-Optical Switching and Routing with a Nonlinear Metamaterial

  • Xiongshuo Yan
  • Guanghui Wang
Article
  • 176 Downloads

Abstract

We report the dynamic control characteristics of electromagnetic wave propagation in a nonlinear metamaterial by an applied electric field, which is constructed by an array of metallic nanowires embedded into a nonlinear dielectric. Numerical results show that the composite structure can appear three kinds of interesting interconversion characteristics among positive refraction, negative refraction, and cut-off states by adjusting the intensity of the applied electric field. Consequently, we can switch all-optically light states between the total reflection state (OFF state) and the total transmission state (ON state), as well as control light propagation route dynamically. Moreover, we also elaborate on the dependency of the refraction angles of energy flow and wave vector, and Brewster angle on the applied electric field and the orientation angle φ. These properties open up an avenue for potential applications of nonlinear metamaterials in nanophotonic devices such as all-optical switches, routers, and wave cut-off devices.

Keywords

All-optical devices Nonlinear metamaterials Applied electric field Refraction 

Notes

Acknowledgements

Authors thank X. B. Yang for useful discussions and suggestions.

Funding Information

This work was supported by the National Natural Science Foundation of China (11474106, 61178003), the Natural Science Foundation of Guangdong Province, China (2016A030313439), and the Science and Technology Program of Guangzhou City, China (201707010403).

References

  1. 1.
    Burgos S P, De W R, Polman A, Atwater H A (2010) A single-layer wide-angle negative-index metamaterial at visible frequencies. Nat Mater 9(5):407–412CrossRefPubMedGoogle Scholar
  2. 2.
    Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T, Zhou L (2007) Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys Rev Lett 99(6):063908CrossRefPubMedGoogle Scholar
  3. 3.
    Ginzburg P, Rodríguez Fortuño FJ, Wurtz GA, Dickson W, Murphy A, Morgan F, Pollard R J, Iorsh I, Atrashchenko A, Belov P A (2013) Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials. Opt Express 21(12):14907–14917CrossRefPubMedGoogle Scholar
  4. 4.
    Smson ZL, Macdonald K F, Angelis F D, Gholipour B, Knight K, Huang C C, Fabrizio E D, Hewak D W, Zheludev N I (2010) Metamaterial electro-optic switch of nanoscale thickness. Appl Phys Lett 96(14):551Google Scholar
  5. 5.
    Shoaei M, Moravvejfarshi M K, Yousefi L (2015) All-optical switching of nonlinear hyperbolic metamaterials in visible and near-infrared regions. J Opt Soc Am B 32(11):2355–2363CrossRefGoogle Scholar
  6. 6.
    Li W, Liu Z, Zhang X, Jiang X (2012) Switchable hyperbolic metamaterials with magnetic control. Appl Phys Lett 100(16):3966Google Scholar
  7. 7.
    Zharov A A, Shadrivov I V, Kivshar Y S (2003) Nonlinear properties of left-handed metamaterials. Phys Rev Lett 91(3):037401CrossRefPubMedGoogle Scholar
  8. 8.
    Lapine M, Gorkunov M, Ringhofer K H (2003) Nonlinearity of a metamaterial arising from diode insertions into resonant conductive elements. Phys Rev E 67(2):065601CrossRefGoogle Scholar
  9. 9.
    Poutrina E, Huang D, Smith D R (2010) Analysis of nonlinear electromagnetic metamaterials. New J Phys 12(9):093010CrossRefGoogle Scholar
  10. 10.
    Yang R, Shadrivov I V (2010) Double-nonlinear metamaterials. Appl Phys Lett 97(23):231114CrossRefGoogle Scholar
  11. 11.
    Lerosey G, De Rosny J, Tourin A, Fink M (2007) Focusing beyond the diffraction limit with far-field time reversal. Science 315(5815):1120–1122CrossRefPubMedGoogle Scholar
  12. 12.
    Verslegers L, Catrysse P B, Yu Z, Fan S (2009) Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array. Phys Rev Lett 103(3):033902CrossRefPubMedGoogle Scholar
  13. 13.
    Silveirinha M G (2013) Theory of spatial optical solitons in metallic nanowire materials. Phys Rev B 87 (23):235115CrossRefGoogle Scholar
  14. 14.
    Dani K M, Ku Z, Upadhya P C, Prasankumar R P, Brueck S, Taylor A J (2009) Subpicosecond optical switching with a negative index metamaterial. Nano Lett 9(10):3565–3569CrossRefPubMedGoogle Scholar
  15. 15.
    Shadrivov I V, Morrison S K, Kivshar Y S (2006) Tunable split-ring resonators for nonlinear negative-index metamaterials. Opt Express 14(20):9344–9349CrossRefPubMedGoogle Scholar
  16. 16.
    Sun L, Li Z, Luk T S, Yang X, Gao J (2015) Nonlocal effective medium analysis in symmetric metal-dielectric multilayer metamaterials. Phys Rev B 91(19):195147CrossRefGoogle Scholar
  17. 17.
    Geng T, Zhuang S, Gao J, Yang X (2015) Nonlocal effective medium approximation for metallic nanorod metamaterials. Phys Rev B 91(24):245128CrossRefGoogle Scholar
  18. 18.
    Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy A M, Zhang X (2008) Optical negative refraction in bulk metamaterials of nanowires. Science 321(5891):930–930CrossRefPubMedGoogle Scholar
  19. 19.
    Kante B (2009) Metamaterials, from micro-wave to optics: theory and applications. Ann Phys 34(2-3):1–120CrossRefGoogle Scholar
  20. 20.
    Pitarke J, Garcia-Vidal F, Pendry J (1998) Effective electronic response of a system of metallic cylinders. Phys Rev B 57(24):15261CrossRefGoogle Scholar
  21. 21.
    Maslovski S, Tretyakov S, Belov P (2002) Wire media with negative effective permittivity: a quasi-static model. Microw Opt Technol Lett 35(1):47–51CrossRefGoogle Scholar
  22. 22.
    Silveirinha M G, Belov P A, Simovski C R (2008) Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods. Opt Lett 33(15):1726–1728CrossRefPubMedGoogle Scholar
  23. 23.
    Belov P A, Hao Y, Sudhakaran S (2006) Subwavelength microwave imaging using an array of parallel conducting wires as a lens. Phys Rev B 73(3):033108CrossRefGoogle Scholar
  24. 24.
    Silveirinha M G (2006) Additional boundary condition for the wire medium. IEEE Trans Antennas Propag 54(6):1766–1780CrossRefGoogle Scholar
  25. 25.
    Belov P A, Simovski C R, Ikonen P (2005) Canalization of subwavelength images by electromagnetic crystals. Phys Rev B 71(19):193105CrossRefGoogle Scholar
  26. 26.
    Ye F, Mihalache D, Hu B, Panoiu N C (2010) Subwavelength plasmonic lattice solitons in arrays of metallic nanowires. Phys Rev Lett 104(10):106802CrossRefPubMedGoogle Scholar
  27. 27.
    Lemoult F, Fink M, Lerosey G (2011) Revisiting the wire medium: an ideal resonant metalens. Wave Random Complex 21(4):591–613CrossRefGoogle Scholar
  28. 28.
    Belov P A, Silveirinha M G (2006) Resolution of subwavelength transmission devices formed by a wire medium. Phys Rev E 73(5):056607CrossRefGoogle Scholar
  29. 29.
    Lai Y, Hui P (2013) Surface plasmon dispersion relation of a metallic wire in a nonlinear dielectric medium. Opt Commun 304:111–115CrossRefGoogle Scholar
  30. 30.
    Wang Y, Plummer E, Kempa K (2011) Foundations of plasmonics. Adv Phys 60(5):799–898CrossRefGoogle Scholar
  31. 31.
    Shvonski A J, Kong J, Kempa K (2017) Nonlocal extensions of the electromagnetic response of plasmonic and metamaterial structures. Phys Rev B 95(4):045149CrossRefGoogle Scholar
  32. 32.
    Shoaei M, Yousefi L, Moravvejfarshi M K (2015) Nanostructured graphene-based hyperbolic metamaterial performing as a wide-angle near infrared electro-optical switch. Appl Opt 54(5):1206–1211CrossRefPubMedGoogle Scholar
  33. 33.
    Wang H, Wu J, Guo J, Jiang L, Xiang Y, Wen S (2016) Low-threshold optical bistability with multilayer graphene-covering Otto configuration. J Phys D Appl Phys 49(25):255306CrossRefGoogle Scholar
  34. 34.
    Zhao H J, Li Z H (2013) Low-threshold optical bistability in metal-nonlinear dielectric multilayer nanostructure. Epl 102(2):24 003CrossRefGoogle Scholar
  35. 35.
    Jian-Hua Z, Hai-Lu L, Shuang-Chun W, An-Le F, Bin-Xian Z (2009) Anomalous phenomena of electromagnetic wave propagation in metamaterials for arbitrary orientation of optical axis. Acta Phys Sin-Ch Ed 58(3):1765–1772Google Scholar
  36. 36.
    Smith D, Schurig D (2003) Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys Rev Lett 90(7):077405CrossRefPubMedGoogle Scholar
  37. 37.
    Zhao H, Zhang J, Wang G (2017) Engineering hybrid guided modes in subwavelength uniaxial metamaterial waveguides. Plasmonics 12(2):245–255CrossRefGoogle Scholar
  38. 38.
    Lu W, Sokoloff J, Sridhar S (2004) Refraction of electromagnetic energy for wave packets incident on a negative-index medium is always negative. Phys Rev E 69(2):026604CrossRefGoogle Scholar
  39. 39.
    Smith D, Schurig D, Pendry J (2002) Negative refraction of modulated electromagnetic waves. Appl Phys Lett 81(15):2713–2715CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and DevicesSouth China Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations