Advertisement

Plasmonics

, Volume 13, Issue 6, pp 1963–1969 | Cite as

Electronic Collective Mode Behaviors in Doped and Gated Armchair-Type Graphene Nanoribbons

  • Mohsen Yarmohammadi
  • Kavoos Mirabbaszadeh
Article
  • 64 Downloads

Abstract

Motivated by the recent nanophotonic community, in this work, we address the behavior of quantized charge-density fluctuations of doped and gated semiconductor armchair-type graphene nanoribbons within the tight-binding model and the Green’s function technique. In particular, we study the behavior of frequency-dependent susceptibility, when the system is exposed to photons or electrons. Injecting electrons by doping or ejecting ones by gating lead to different treatments in response function. Doping offers new collective modes due to added states between the valence and conduction bands (provided by the density of states) corresponding to intraband transitions, while gating distributes intraband modes. The results show that both ribbon width and doping concentrations affect the intraband transitions in electro-optical devices. Another remarkable point is the strong sensitivity of intraband plasmons to the direction of incoming photons or electrons. We found that the susceptibility of doped nanoribbons vanishes at perpendicular angles due to the distribution of intraband modes.

Keywords

Tight-binding approximation Green’s functions Plasmon mode Intra- and interband transitions Semiconductor armchair graphene nanoribbon 

References

  1. 1.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183CrossRefPubMedGoogle Scholar
  2. 2.
    Hiura H (2004) Tailoring graphite layers by scanning tunneling microscopy. Appl Surf Sci 222:374CrossRefGoogle Scholar
  3. 3.
    Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature (London) 438:201CrossRefGoogle Scholar
  4. 4.
    Berger C, Song ZM, Li XB, Wu XS, Brown N, Naud C, Mayou D, Li TB, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science 312:1191CrossRefPubMedGoogle Scholar
  5. 5.
    Berger C, Song ZM, Li TB, Li XB, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, de Heer WA (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108:19912CrossRefGoogle Scholar
  6. 6.
    Ezawa M (2006) Peculiar width dependence of the electronic properties of carbon nanoribbons. Phys Rev B 73:045432CrossRefGoogle Scholar
  7. 7.
    Li TC, Lu SP (2008) Quantum conductance of graphene nanoribbons with edge defects. Phys Rev B 77:085408CrossRefGoogle Scholar
  8. 8.
    Brey L, Fertig HA (2006) Edge states and the quantized Hall effect in graphene. Phys Rev B 73:195408CrossRefGoogle Scholar
  9. 9.
    Xu N, Wang BL, Shi D, Zhang C (2012) Transport properties of AA-stacking bilayer graphene nanoribbons. Solid State Commun 152:994CrossRefGoogle Scholar
  10. 10.
    Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys Rev B 54:17954CrossRefGoogle Scholar
  11. 11.
    Brey L, Fertig HA (2006) Electronic states of graphene nanoribbons studied with the Dirac equation. Phys Rev B 73: 235411CrossRefGoogle Scholar
  12. 12.
    Son YW, Cohen ML, Louie SG (2006) Energy Gaps in Graphene Nanoribbons. Phys Rev Lett 97:216803CrossRefPubMedGoogle Scholar
  13. 13.
    Raza H, Kan EC (2008) An extended Hückel theory based atomistic model for graphene nanoelectronics. J Comput Electron 7:372CrossRefGoogle Scholar
  14. 14.
    Raza H, Kan EC (2008) Armchair graphene nanoribbons: Electronic structure and electric-field modulation. Phys Rev B 77: 245434CrossRefGoogle Scholar
  15. 15.
    Ruffleux P, Cai J, Pumb NC, Patthey L, Prezzi D, Ferretti A, Molinari E, Feng X, Mllen K, Pignedoli CA, Fasel R (2012) Electronic structure of atomically precise graphene nanoribbons. Acs Nano 6:6930CrossRefGoogle Scholar
  16. 16.
    Zheng H, Wang ZF, Luo T, Shi QW, Chen J (2007) Analytical study of electronic structure in armchair graphene nanoribbons. Phys Rev B 75:165414CrossRefGoogle Scholar
  17. 17.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Castro Neto AH, Guinea F, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109CrossRefGoogle Scholar
  19. 19.
    Jablan M, Buljan H, Soljacic M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80:245435CrossRefGoogle Scholar
  20. 20.
    Mishchenko EG, Shytov AV, Silvestrov PG (2010) Guided plasmons in graphene p−n junctions. Phys Rev Lett 104:156806CrossRefPubMedGoogle Scholar
  21. 21.
    Ju L et al (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6:630CrossRefPubMedGoogle Scholar
  22. 22.
    Bao LQ, Zhang H, Wang B, Ni ZH, Lim CHYX, Wang Y, Tang DY, Loh KP (2011) Broadband graphene polarizer. Nat Photonics 5:411CrossRefGoogle Scholar
  23. 23.
    Rana F (2008) Graphene Terahertz Plasmon Oscillators. IEEE Trans Nanotechnol 7:91CrossRefGoogle Scholar
  24. 24.
    Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F (2013) Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photonics 7:394CrossRefGoogle Scholar
  25. 25.
    Nikitin AY, Guinea F, Garcia-Vidal FJ, MartinMoreno L (2012) Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Phys Rev B 85:081405CrossRefGoogle Scholar
  26. 26.
    Fei Z et al (2016) Edge and surface plasmons in graphene nanoribbons. Nano Lett 15:8271CrossRefGoogle Scholar
  27. 27.
    Chen J et al (2012) Optical nano-imaging of gate-tunable graphene plasmons. Nature 487:77CrossRefPubMedGoogle Scholar
  28. 28.
    Fei Z et al (2012) Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487:82CrossRefPubMedGoogle Scholar
  29. 29.
    Koppens FHL, Chang DE, García de Abajo FJ (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11:3370CrossRefPubMedGoogle Scholar
  30. 30.
    Brar VW, Jang MS, Sherrott M, Lopez JJ, Atwater HA (2013) Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett 13:2541CrossRefPubMedGoogle Scholar
  31. 31.
    Sensale-Rodriguez B, Yan R, Kelly MM, Fang T, Tahy K, Hwang WS, Jena D, Liu L, Xing HG (2012) Broadband graphene terahertz modulators enabled by intraband transitions. Nat Commun 3:780CrossRefPubMedGoogle Scholar
  32. 32.
    Woessner A et al (2015) Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat Mater 14:421CrossRefPubMedGoogle Scholar
  33. 33.
    Tong J, Muthee M, Chen S-Y, Yngvesson SK, Yan J (2015) Antenna enhanced graphene THz Emitter and detector. Nano Lett 15:5295CrossRefPubMedGoogle Scholar
  34. 34.
    Andersen DR, Raza H (2012) Plasmon dispersion in semimetallic armchair graphene nanoribbons. Phys Rev B 85:075425CrossRefGoogle Scholar
  35. 35.
    Thongrattanasiri S, Manjavacas A, García de Abajo FJ (2012) Quantum Finite-Size Effects in Graphene Plasmons. ACS Nano 6:1766CrossRefPubMedGoogle Scholar
  36. 36.
    Popov VV, Bagaeva TY, Otsuji T, Ryzhii V (2010) Oblique terahertz plasmons in graphene nanoribbon arrays. Phys Rev B 81:073404CrossRefGoogle Scholar
  37. 37.
    Wang W, Apell P, Kinaret J (2011) Edge plasmons in graphene nanostructures. Phys Rev B 84:085423CrossRefGoogle Scholar
  38. 38.
    Vacacela Gomez C, Pisarra M, Gravina M, Pitarke JM, Sindona A (2016) Plasmon modes of graphene nanoribbons with periodic planar arrangements. Phys Rev Lett 177:116801CrossRefGoogle Scholar
  39. 39.
    Mahan GD (1993) Many particle physics. Plenum Press, New YorkGoogle Scholar
  40. 40.
    Riccardi P, Pisarra M, Cupolillo A, Commisso M, Sindona A, Baragiola RA, Dukes CA (2010) Secondary electron emission spectra from clean and cesiated Al surfaces: the role of plasmon decay and data analysis for applications. J Phys: Condens Matter 22:305004Google Scholar
  41. 41.
    Wick GC (1950) The Evaluation of the Collision Matrix. Phys Rev 80:268CrossRefGoogle Scholar
  42. 42.
    Wakabayashi K, Fujita M, Ajiki H, Sigrist M (1999) Electronic and magnetic properties of nanographite ribbons. Phys Rev B 59:8271CrossRefGoogle Scholar
  43. 43.
    Wakabayashi K, Takane Y, Yamamoto M, Sigrist M (2009) Electronic transport properties of graphene nanoribbons. New J Phys 11:095016CrossRefGoogle Scholar
  44. 44.
    Wakabayashi K, ichi Sasaki K, Nakanishi T, Enoki T (2010) Electronic states of graphene nanoribbons and analytical solutions. Sci Technol Adv Mater 11:054504CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Grosso G, Parravicini GP (2014) Solid state physics, 2nd edn. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Energy Engineering and PhysicsAmirkabir University of TechnologyTehranIran

Personalised recommendations