Advertisement

Plasmonics

, Volume 13, Issue 6, pp 1935–1940 | Cite as

Efficient and Directional Excitation of Surface Plasmon Polaritons by Oblique Incidence on Metallic Ridges

  • Eduardo Pisano
  • Cesar E. Garcia-Ortiz
  • Fabiola Armenta-Monzon
  • Manuel Garcia-Mendez
  • Victor Coello
Article
  • 164 Downloads

Abstract

For many years, the search for efficient surface plasmon polariton (SPP) excitation mechanisms has been a recurring matter in the development of compact plasmonic devices. In this work, we excited SPPs illuminating a subwavelength metallic ridge with a focused spot to characterize the coupling efficiency by varying the incidence angle of the excitation beam from − 50 to 50°. The intensity distribution of the excited SPPs was measured using leakage radiation microscopy to determine the relative coupling efficiency in the wavelength interval from 740 to 840 nm. We modeled the excitation efficiency as a function of the incidence angle using a simple analytical diffraction model. Two ridges of different width (200 and 500 nm) were used to compare results and validate the model. The experimental results show a higher coupling efficiency at oblique incidence, where the coupling was enhanced by factors of 2× for the 500-nm-wide ridge, and 3× for the 200-nm-wide ridge, as well as unidirectional SPP excitation. The experimental results are in good agreement with the proposed model.

Keywords

Surface plasmons Oblique incidence Coupling efficiency Excitation 

Notes

Acknowledgments

V.C. and C.E.G.-O. acknowledge the financial support from CONACYT Basic Scientific Research Grants Nos. 250719 and 252621.

References

  1. 1.
    Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Z Phys 23(12):2135–2136Google Scholar
  2. 2.
    Radko IP, Bozhevolnyi SI, Brucoli G, Martín-Moreno L, García-Vidal FJ, Boltasseva A (2008) Efficiency of local surface plasmon polariton excitation on ridges. Phys Rev B 78(11):115115CrossRefGoogle Scholar
  3. 3.
    He M-D, Liu J-Q, Gong Z-Q, Li S, Luo Y-F (2012) Directional excitation of surface plasmon polaritons in structure of subwavelength metallic holes. Opt Commun 285(2):182–185.  https://doi.org/10.1016/j.optcom.2011.09.020 CrossRefGoogle Scholar
  4. 4.
    Radko I, Evlyukhin A, Boltasseva A, Bozhevolnyi S (2008) Refracting surface plasmon polaritons with nanoparticle arrays. Opt Express 16(6):3924–3930.  https://doi.org/10.1364/OE.16.003924 CrossRefPubMedGoogle Scholar
  5. 5.
    Pisano E, Coello V, Garcia-Ortiz CE, Chen Y, Beerman J, Bozhevolnyi SI (2016) Plasmonic channel waveguides in random arrays of metallic nanoparticles. Opt Express 24(15):17080–17089.  https://doi.org/10.1364/OE.24.017080 CrossRefPubMedGoogle Scholar
  6. 6.
    Xu T, Zhao Y, Gan D, Wang C, Du C, Luo X (2008) Directional excitation of surface plasmons with subwavelength slits. Appl Phys Lett 92(10):101501.  https://doi.org/10.1063/1.2894183 CrossRefGoogle Scholar
  7. 7.
    Smith CLC, Thilsted AH, Garcia-Ortiz CE, Radko IP, Marie R, Jeppesen C, Vannahme C, Bozhevolnyi SI, Kristensen A (2014) Efficient excitation of channel plasmons in tailored, UV-lithography-defined V-grooves. Nano Lett 14(3):1659–1664.  https://doi.org/10.1021/nl5002058 CrossRefPubMedGoogle Scholar
  8. 8.
    Han Z, Garcia-Ortiz CE, Radko IP, Bozhevolnyi SI (2013) Detuned-resonator induced transparency in dielectric-loaded plasmonic waveguides. Opt Express 38(6):875–877Google Scholar
  9. 9.
    Ditlbacher H, Krenn JR, Schider G, Leitner A, Aussenegg FR (2002) Two-dimensional optics with surface plasmon polaritons. Appl Phys 81(10):1762–1764Google Scholar
  10. 10.
    Klick A, de la Cruz S, Lemke C, Großmann M, Beyer H, Fiutowski J, Rubahn H-G, Méndez ER, Bauer M (2016) Amplitude and phase of surface plasmon polaritons excited at a step edge. Appl Phys B Lasers Opt 122(4):79CrossRefGoogle Scholar
  11. 11.
    Garcia-Ortiz CE, Pisano E, Coello V (2017) Description and characterization of plasmonic Gaussian beams. J Opt 19(8):085001.  https://doi.org/10.1088/2040-8986/aa7724 CrossRefGoogle Scholar
  12. 12.
    Drezet A, Stepanov A, Hohenau A, Steinberger B, Galler N, Ditlbacher H, Leitner A, Aussenegg F, Krenn J, Gonzalez M, Weeber JC (2006) Surface plasmon interference fringes in back-reflection. Europhys Lett 74(4):693–698.  https://doi.org/10.1209/epl/i2006-10027-7 CrossRefGoogle Scholar
  13. 13.
    Liu H, Lalanne P, Yang X, Hugonin JP (2008) Surface plasmon generation by subwavelength isolated objects. IEEE J Sel Top Quantum Electron 14(6):1522–1529CrossRefGoogle Scholar
  14. 14.
    Kim H, Lee B (2009) Unidirectional surface plasmon polariton excitation on single slit with oblique backside illumination. Plasmonics 4(6):153–159.  https://doi.org/10.1007/s11468-009-9086-2 CrossRefGoogle Scholar
  15. 15.
    Hu H, Zeng X, Zhao Y, Li J, Song H, Song G, Xu Y, Gan Q (2016) Unidirectional coupling of surface plasmon polaritons by a single slit on a metal substrate. IEEE Photon Technol Lett 28(21):2395–2398.  https://doi.org/10.1109/LPT.2016.2596782 CrossRefGoogle Scholar
  16. 16.
    Sonnefraud Y, Kerman S, Martino GD, Lei DY, Maier SA (2012) Directional excitation of surface plasmon polaritons via nanoslits under varied incidence observed using leakage radiation microscopy. Opt Express 20(5):4893–4902.  https://doi.org/10.1364/OE.20.004893 CrossRefPubMedGoogle Scholar
  17. 17.
    Vieu C, Carcenac F, Pepin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo L, Couraud L, Launois H (2000) Electron beam lithography: resolution limits and applications. Appl Surf Sci 164(1–4):111–117.  https://doi.org/10.1016/S0169-4332(00)00352-4 CrossRefGoogle Scholar
  18. 18.
    Drezet A, Hohenau A, Koller D, Stepanov A, Ditlbacher H, Steinberger B, Aussenegg FR, Leitner A, Krenn JR (2008) Leakage radiation microscopy of surface plasmon polaritons. Mater Sci Eng B 149(3):220–229.  https://doi.org/10.1016/j.mseb.2007.10.010 CrossRefGoogle Scholar
  19. 19.
    Hassan K, Bouhelier A, Bernardin T, Colas-des-Francs G, Weeber JC, Dereux A, Espiau de Lamaestre R (2013) Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides. Phys Rev B 87(19):195428CrossRefGoogle Scholar
  20. 20.
    Umul YZ (2011) Babinet’s principle in the Fraunhofer diffraction by a finite thin wire. Optik 122(16):1434–1436.  https://doi.org/10.1016/j.ijleo.2010.09.023 CrossRefGoogle Scholar
  21. 21.
    Zentgraf T, Meyrath TP, Seidel A, Kaiser S, Giessen H, Rockstuhl C, Lederer F (2007) Babinet’s principle for optical frequency metamaterials and nanoantennas. Phys Rev B 76(3):033407.  https://doi.org/10.1103/PhysRevB.76.033407 CrossRefGoogle Scholar
  22. 22.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379.  https://doi.org/10.1103/PhysRevB.6.4370 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CICESE, Unidad MonterreyApodacaMexico
  2. 2.CONACYT–CICESE, Unidad MonterreyApodacaMexico
  3. 3.CICFIM, FCFM–UANLSan Nicolás de los GarzaMexico

Personalised recommendations