Advertisement

Plasmonics

, Volume 13, Issue 6, pp 1929–1933 | Cite as

Plasmonic Lens Based on Rectangular Holes

  • Peiyu Li
  • Qi Zhang
  • Yanying Li
  • Han Wang
  • Lixia Liu
  • Shuyun Teng
Article
  • 117 Downloads

Abstract

A compact plasmonic lens is proposed in this paper. This plasmonic lens consists of rectangular holes etched on the silver film and arranged on one straight line and possesses the characteristics of short focus length, ultrathin thickness, and strong focus ability. The theoretical design for the plasmonic lens abides by the constructive interference theorem, and the surface plasmon polaritons excited by the holes with linearly polarized light illumination focuses effectively. The plasmonic lenses with single and double focus spots are provided, and the simulation experiment gives the powerful verification. The distinct structure feature and the excellent focusing characteristic of this plasmonic lens are benefit for its applications in optical integration.

Keywords

Surface plasmon polaritons Plasmonic focusing Nanostructure 

Notes

Funding information

The authors acknowledge the support of the National Natural Science Foundation of China under Grant No. 10874105 and Shandong Provincial Natural Science Foundation of China under Grant No. 2015ZRB01864.

References

  1. 1.
    Ni X, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM (2012) Broadband light bending with plasmonic nanoantennas. Science 335(6067):427–427.  https://doi.org/10.1126/science.1214686 CrossRefGoogle Scholar
  2. 2.
    Matsui T, Agrawal A, Nahata A, Vardeny ZV (2007) Transmission resonances through aperiodic arrays of subwavelength apertures. Nature 446(7135):517–521.  https://doi.org/10.1038/nature05620 CrossRefGoogle Scholar
  3. 3.
    Zhang Q, Li P, Li Y, Ren X, Teng S (2017) A universal plasmonic polarization state analyzer. Plasmonics.  https://doi.org/10.1007/s11468-017-0612-3 CrossRefGoogle Scholar
  4. 4.
    Genevet P, Yu N, Aieta F, Lin J, Kats MA, Blanchard R, Scully MO, Gaburro Z, Capasso F (2012) Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl Phys Lett 100(1):013101.  https://doi.org/10.1063/1.3673334 CrossRefGoogle Scholar
  5. 5.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830.  https://doi.org/10.1038/nature01937 CrossRefGoogle Scholar
  6. 6.
    Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408(3):131–314.  https://doi.org/10.1016/j.physrep.2004.11.001 CrossRefGoogle Scholar
  7. 7.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521.  https://doi.org/10.1021/cr068126n CrossRefGoogle Scholar
  8. 8.
    Liu Z, Steele JM, Srituravanich W, Pikus Y, Sun C, Zhang X (2005) Focusing surface plasmons with a plasmonic lens. Nano Lett 5(9):1726–1729.  https://doi.org/10.1021/nl051013j CrossRefGoogle Scholar
  9. 9.
    Chen W, Abeysinghe DC, Nelson RL et al (2010) Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer. Nano Lett 10(6):2075–2079.  https://doi.org/10.1021/nl100340w CrossRefGoogle Scholar
  10. 10.
    Fang Z, Peng Q, Song W, Hao F, Wang J, Nordlander P, Zhu X (2010) Plasmonic focusing in symmetry broken nanocorrals. Nano Lett 11(2):893–897.  https://doi.org/10.1021/nl104333n CrossRefGoogle Scholar
  11. 11.
    Yanai A, Levy U (2009) Plasmonic focusing with a coaxial structure illuminated by radially polarized light. Opt Express 17(2):924–932.  https://doi.org/10.1364/OE.17.000924 CrossRefGoogle Scholar
  12. 12.
    Yuan GH, Yuan XC, Bu J, Tan PS, Wang Q (2011) Manipulation of surface plasmon polaritons by phase modulation of incident light. Opt Express 19(1):224–229.  https://doi.org/10.1364/OE.19.000224 CrossRefGoogle Scholar
  13. 13.
    Jun YC, Huang KC, Brongersma ML (2011) Plasmonic beaming and active control over fluorescent emission. Nat Commun 2:283.  https://doi.org/10.1038/ncomms1286 CrossRefGoogle Scholar
  14. 14.
    Lee SY, Kim K, Kim SJ, Park H, Kim KY, Lee B (2015) Plasmonic meta-slit: shaping and controlling near-field focus. Optica 2(1):6–13.  https://doi.org/10.1364/OPTICA.2.000006 CrossRefGoogle Scholar
  15. 15.
    Yin L, Vlasko-Vlasov VK, Pearson J (2005) Subwavelength focusing and guiding of surface plasmons. Nano Lett 5(7):1399–1402.  https://doi.org/10.1021/nl050723m CrossRefGoogle Scholar
  16. 16.
    Huang F, Jiang X, Yuan H, Li S, Yang H, Sun X (2016) Centrally symmetric focusing of surface plasmon polaritons with a rectangular holes arrayed plasmonic lens. Plasmonics 11(6):1637–1643.  https://doi.org/10.1007/s11468-016-0220-7 CrossRefGoogle Scholar
  17. 17.
    Tanemura T, Balram KC, Ly-Gagnon DS, Wahl P, White JS, Brongersma ML, Miller DAB (2011) Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler. Nano Lett 11(7):2693–2698.  https://doi.org/10.1021/nl200938h CrossRefGoogle Scholar
  18. 18.
    Xu Q, Zhang X, Xu Y, Li Q, Li Y, Ouyang C, Tian Z, Gu J, Zhang W, Zhang X, Han J, Zhang W (2016) Plasmonic metalens based on coupled resonators for focusing of surface plasmons. Sci Rep 6(1):37861.  https://doi.org/10.1038/srep37861 CrossRefGoogle Scholar
  19. 19.
    Lee GY, Lee SY, Yun H, Park H, Kim J, Lee K, Lee B (2016) Near-field focus steering along arbitrary trajectory via multi-lined distributed nanoslits. Sci Rep 6(1):33317.  https://doi.org/10.1038/srep33317 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The College of Physics and Electronics, Shandong Provincial Key Laboratory of Optics and Photonic DeviceShandong Normal UniversityJinanChina

Personalised recommendations