Advertisement

Plasmonics

, Volume 13, Issue 6, pp 1897–1906 | Cite as

Plasmonic Au-MoO3 Colloidal Nanoparticles by Reduction of HAuCl4 by Blue MoOx Nanosheets and Observation of the Gasochromic Property

  • M. A. Hosseini
  • M. Ranjbar
Article
  • 72 Downloads

Abstract

Defective colloids of blue MoOx nanosheets were prepared by anodizing exfoliation method in water. This colloidal solution exhibits an optical plasmonic absorption band in the infrared region at about 760 nm. Merely mixing HAuCl4 solution with the MoOx leads to loss of the blue color, decaying of 760 nm plasmonic peak and simultaneous formation of the gold plasmon absorption peak at 550–570 nm. Some spectral variations in gold plasmonic peak and MoOx optical band gap were observed for Mo:Au ratio of 10:1, 20:1, 30:1, and 40:1. The size of the gold nanoparticles was in the 5–6 nm range with fcc crystalline structure. X-ray photoelectron spectroscopy (XPS) revealed that the initial solution contains Mo5+ states and hydroxyl groups, which after reduction, hydroxyl groups are eliminated and the Mo5+ states converted to Mo6+. The obtained Au-MoO3 colloids have a gasochromic property in which they are colored back to blue in the presence of hydrogen gas and the molybdenum oxide absorption peak recovered again. Furthermore, it was observed that both gold and Mo oxide plasmonic peaks redshift by insertion of hydrogen gas which is attributed to change in solution refractive index and formation of defect concentration.

Keywords

MoOx nanosheets Anodizing exfoliation HAuCl4 Gold nanoparticles Localized surface plasmon resonance Gasochromic TEM XPS 

References

  1. 1.
    Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49(19):3280–3294.  https://doi.org/10.1002/anie.200904359 CrossRefGoogle Scholar
  2. 2.
    Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228.  https://doi.org/10.1007/s10103-007-0470-x CrossRefPubMedGoogle Scholar
  3. 3.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586.  https://doi.org/10.1021/ar7002804 CrossRefPubMedGoogle Scholar
  4. 4.
    Lin CAJ, Yang TY, Lee CH, Huang SH, Sperling RA, Zanella M, Li JK, Shen JL, Wang HH, Yeh HI, Parak WJ, Chang WH (2009) Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 3(2):395–401.  https://doi.org/10.1021/nn800632j CrossRefPubMedGoogle Scholar
  5. 5.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 7:801–802.  https://doi.org/10.1039/C39940000801 CrossRefGoogle Scholar
  6. 6.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346.  https://doi.org/10.1021/cr030698+ CrossRefGoogle Scholar
  7. 7.
    Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103(40):8410–8426.  https://doi.org/10.1021/jp9917648 CrossRefGoogle Scholar
  8. 8.
    Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179.  https://doi.org/10.1126/science.1077229 CrossRefPubMedGoogle Scholar
  9. 9.
    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75.  https://doi.org/10.1039/df9511100055 CrossRefGoogle Scholar
  10. 10.
    Cai H, Yao P (2014) Gold nanoparticles with different amino acid surfaces: serum albumin adsorption, intracellular uptake and cytotoxicity. Colloids Surf B: Biointerfaces 123:900–906.  https://doi.org/10.1016/j.colsurfb.2014.10.042 CrossRefPubMedGoogle Scholar
  11. 11.
    Scarabelli L, Sánchez-Iglesias A, Pérez-Juste J, Liz-Marzán LM (2015) A “tips and tricks” practical guide to the synthesis of gold nanorods. J Phys Chem Lett (6):4270−4279. ACS PublicationsGoogle Scholar
  12. 12.
    Murdoch M, Waterhouse G, Nadeem M, Metson J, Keane M, Howe R, Llorca J, Idriss H (2011) The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat Chem 3(6):489–492.  https://doi.org/10.1038/nchem.1048 CrossRefPubMedGoogle Scholar
  13. 13.
    Subramanian V, Wolf EE, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J Am Chem Soc 126(15):4943–4950.  https://doi.org/10.1021/ja0315199 CrossRefPubMedGoogle Scholar
  14. 14.
    Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44(48):7852–7872.  https://doi.org/10.1002/anie.200500766 CrossRefGoogle Scholar
  15. 15.
    Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109(29):13857–13870.  https://doi.org/10.1021/jp0516846 CrossRefPubMedGoogle Scholar
  16. 16.
    Bastús NG, Comenge J, Puntes V (2011) Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27(17):11098–11105.  https://doi.org/10.1021/la201938u CrossRefPubMedGoogle Scholar
  17. 17.
    Henglein A, Meisel D (1998) Radiolytic control of the size of colloidal gold nanoparticles. Langmuir 14(26):7392–7396.  https://doi.org/10.1021/la981278w CrossRefGoogle Scholar
  18. 18.
    Langille MR, Personick ML, Zhang J, Mirkin CA (2012) Defining rules for the shape evolution of gold nanoparticles. J Am Chem Soc 134(35):14542–14554.  https://doi.org/10.1021/ja305245g CrossRefPubMedGoogle Scholar
  19. 19.
    Orendorff CJ, Murphy CJ (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110(9):3990–3994.  https://doi.org/10.1021/jp0570972 CrossRefPubMedGoogle Scholar
  20. 20.
    Sánchez-Iglesias A, Pastoriza-Santos I, Pérez-Juste J, Rodríguez-González B, García De Abajo FJ, Liz-Marzán LM (2006) Synthesis and optical properties of gold nanodecahedra with size control. Adv Mater 18(19):2529–2534.  https://doi.org/10.1002/adma.200600475 CrossRefGoogle Scholar
  21. 21.
    Senthil Kumar P, Pastoriza-Santos I, Rodríguez-González B, De Abajo FJG, Liz-Marzán LM (2008) High-yield synthesis and optical response of gold nanostars. Nanotechnology 19(1):015606.  https://doi.org/10.1088/0957-4484/19/01/015606 CrossRefPubMedGoogle Scholar
  22. 22.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191.  https://doi.org/10.1038/nmat1849 CrossRefGoogle Scholar
  23. 23.
    Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102(30):10451–10453.  https://doi.org/10.1073/pnas.0502848102 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Liu Y, Wang Z, Huang B, Yang K, Zhang X, Qin X, Dai Y (2010) Preparation, electronic structure, and photocatalytic properties of Bi2O2CO3 nanosheet. Appl Surf Sci 257(1):172–175.  https://doi.org/10.1016/j.apsusc.2010.06.058 CrossRefGoogle Scholar
  25. 25.
    Ma Y, Jia Y, Wang L, Yang M, Bi Y, Qi Y (2016) Exfoliated thin Bi 2 MoO 6 nanosheets supported on WO 3 electrode for enhanced photoelectrochemical water splitting. Appl Surf Sci 390:399–405.  https://doi.org/10.1016/j.apsusc.2016.08.116 CrossRefGoogle Scholar
  26. 26.
    Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5(4):263–275.  https://doi.org/10.1038/nchem.1589 CrossRefGoogle Scholar
  27. 27.
    Wang F, Ueda W, Xu J (2012) Detection and measurement of surface electron transfer on reduced molybdenum oxides (MoOx) and catalytic activities of Au/MoOx. Angew Chem Int Ed 51(16):3883–3887.  https://doi.org/10.1002/anie.201105922 CrossRefGoogle Scholar
  28. 28.
    Bai H, Yi W, Li J, Xi G, Li Y, Yang H, Liu J (2016) Direct growth of defect-rich MoO3−xultrathin nanobelts for efficiently catalyzed conversion of isopropyl alcohol to propylene under visible light. J Mater Chem A 4(5):1566–1571.  https://doi.org/10.1039/C5TA08603E CrossRefGoogle Scholar
  29. 29.
    Ressler T, Wienold J, Jentoft RE, Girgsdies F (2003) Evolution of defects in the bulk structure of MoO3 during catalytic oxidation of propene. Eur J Inorg Chem (2):301–312Google Scholar
  30. 30.
    Dieterle M, Weinberg G, Mestl G (2002) Raman spectroscopy of molybdenum oxides. Phys Chem Chem Phys 4(5):812–821.  https://doi.org/10.1039/b107012f CrossRefGoogle Scholar
  31. 31.
    Amendola V, Meneghetti M (2009) Size evaluation of gold nanoparticles by UV−vis spectroscopy. J Phys Chem C 113(11):4277–4285.  https://doi.org/10.1021/jp8082425 CrossRefGoogle Scholar
  32. 32.
    Adhikari S, Sarkar D (2014) Hydrothermal synthesis and electrochromism of WO3nanocuboids. RSC Adv 4(39):20145–20153.  https://doi.org/10.1039/C4RA00023D CrossRefGoogle Scholar
  33. 33.
    Delalat F, Ranjbar M, Salamati H (2016) Blue colloidal nanoparticles of molybdenum oxide by simple anodizing method: decolorization by PdCl 2 and observation of in-liquid gasochromic coloration. Sol Energy Mater Sol Cells 144:165–172.  https://doi.org/10.1016/j.solmat.2015.08.038 CrossRefGoogle Scholar
  34. 34.
    Ranjba M, Delalat F, Salamati H (2017) Molybdenum oxide nanosheets prepared by an anodizing-exfoliation process and observation of photochromic properties. Appl Surf Sci 396:1752–1759.  https://doi.org/10.1016/j.apsusc.2016.11.225 CrossRefGoogle Scholar
  35. 35.
    Yao J, Yang Y, Loo B (1998) Enhancement of photochromism and electrochromism in MoO3/Au and MoO3/Pt thin films. J Phys Chem B 102(11):1856–1860.  https://doi.org/10.1021/jp972217u CrossRefGoogle Scholar
  36. 36.
    Cheng H, Qian X, Kuwahara Y, Mori K, Yamashita H (2015) A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions. Adv Mater 27(31):4616–4621.  https://doi.org/10.1002/adma.201501172 CrossRefPubMedGoogle Scholar
  37. 37.
    Li N, Li Y, Sun G, Zhou Y, Ji S, Yao H, Cao X, Bao S, Jin P (2017) Enhanced photochromic modulation efficiency: a novel plasmonic molybdenum oxide hybrid. Nano 9(24):8298–8304CrossRefPubMedGoogle Scholar
  38. 38.
    Angiola M, Alsaif MM, Kalantar-zadeh K, Wisitsoraat A, Wlodarski W, Martucci A (2015) Optical hydrogen sensing based on hybrid 2D MoO 3 /Au nanoparticles. Proc Eng 120:1141–1144.  https://doi.org/10.1016/j.proeng.2015.08.830 CrossRefGoogle Scholar
  39. 39.
    Chen H, Xu N, Deng S, Lu D, Li Z, Zhou J, Chen J (2007) Gasochromic effect and relative mechanism of WO3 nanowire films. Nanotechnology 18(20):6.  https://doi.org/10.1088/0957-4484/18/20/205701 CrossRefGoogle Scholar
  40. 40.
    Georg A, Graf W, Neumann R, Wittwer V (2000) Mechanism of the gasochromic coloration of porous WO3 films. Solid State Ionics 127(3-4):319–328.  https://doi.org/10.1016/S0167-2738(99)00273-8 CrossRefGoogle Scholar
  41. 41.
    Lee SH, Cheong HM, Liu P, Smith D, Tracy CE, Mascarenhas A, Roland Pitts J, Deb SK (2001) Raman spectroscopic studies of gasochromic a-WO3 thin films. Electrochim Acta 46(13-14):1995–1999.  https://doi.org/10.1016/S0013-4686(01)00379-6 CrossRefGoogle Scholar
  42. 42.
    Wittwer V, Datz M, Ell J, Georg A, Graf W, Walze G (2004) Gasochromic windows. Sol Energy Mater Sol Cells 84(1-4):305–314.  https://doi.org/10.1016/j.solmat.2004.01.040 CrossRefGoogle Scholar
  43. 43.
    Deng X, Quek SY, Biener MM, Biener J, Kang DH, Schalek R, Kaxiras E, Friend CM (2008) Selective thermal reduction of single-layer MoO3 nanostructures on Au(111). Surf Sci 602(6):1166–1174.  https://doi.org/10.1016/j.susc.2008.01.014 CrossRefGoogle Scholar
  44. 44.
    He T, Ma Y, Cao Y, Yin Y, Yang W, Yao J (2001) Enhanced visible-light coloration and its mechanism of MoO3 thin films by Au nanoparticles. Appl Surf Sci 180(3-4):336–340.  https://doi.org/10.1016/S0169-4332(01)00370-1 CrossRefGoogle Scholar
  45. 45.
    Karuppasamy L, Chen CY, Anandan S, Wu JJ (2017) High index surfaces of Au-nanocrystals supported on one-dimensional MoO 3 -nanorod as a bi-functional electrocatalyst for ethanol oxidation and oxygen reduction. Electrochim Acta 246:75–88.  https://doi.org/10.1016/j.electacta.2017.06.040 CrossRefGoogle Scholar
  46. 46.
    Pan H, Zuo L, Fu W, Fan C, Andreasen B, Jiang X, Norrman K, Krebs FC, Chen H (2013) Organic Electronics: physics, materials, applications. 14:797–803Google Scholar
  47. 47.
    Tu AG, Zhou X (2010) OLEDs with Au/MoO3 hole injection layer. Faguang Xuebao/Chin J Luminescence 31(2):157–161Google Scholar
  48. 48.
    Tan X, Wang L, Cheng C, Yan X, Shen B, Zhang J (2016) Plasmonic MoO3−x@MoO3nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement. Chem Commun 52(14):2893–2896.  https://doi.org/10.1039/C5CC10020H CrossRefGoogle Scholar
  49. 49.
    Yan W, Petkov V, Mahurin SM, Overbury SH, Dai S (2005) Powder XRD analysis and catalysis characterization of ultra-small gold nanoparticles deposited on titania-modified SBA-15. Catal Commun 6(6):404–408.  https://doi.org/10.1016/j.catcom.2005.04.004 CrossRefGoogle Scholar
  50. 50.
    Chithambararaj A, Bose AC (2011) Investigation on structural, thermal, optical and sensing properties of meta-stable hexagonal MoO3nanocrystals of one dimensional structure. Beilstein J Nanotechnol 2:585–592.  https://doi.org/10.3762/bjnano.2.62 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Huang Q, Hu S, Zhuang J, Wang X (2012) MoO3-x-based hybrids with tunable localized surface plasmon resonances: chemical oxidation driving transformation from ultrathin nanosheets to nanotubes. Chem Eur J 18(48):15283–15287.  https://doi.org/10.1002/chem.201202630 CrossRefPubMedGoogle Scholar
  52. 52.
    Rouhani M, Foo YL, Hobley J, Pan J, Subramanian GS, Yu X, Rusydi A, Gorelik S (2013) Photochromism of amorphous molybdenum oxide films with different initial Mo5+ relative concentrations. Appl Surf Sci 273:150–158.  https://doi.org/10.1016/j.apsusc.2013.01.218 CrossRefGoogle Scholar
  53. 53.
    Ahmad MZ, Golovko VB, Adnan RH, Abu Bakar F, Ruzicka J-Y, Anderson DP, Andersson GG, Wlodarski W (2013) Hydrogen sensing using gold nanoclusters supported on tungsten trioxide thin films. Int J Hydrog Energy 38(29):12865–12877.  https://doi.org/10.1016/j.ijhydene.2013.07.089 CrossRefGoogle Scholar
  54. 54.
    Shakir I, Shahid M, Kang DJ (2010) MoO3 and Cu0.33MoO3 nanorods for unprecedented UV/Visible light photocatalysis. Chem Commun 46(24):4324–4326.  https://doi.org/10.1039/c000003e CrossRefGoogle Scholar
  55. 55.
    Lim B, Camargo PH, Xia Y (2008) Mechanistic study of the synthesis of Au nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4with poly(vinyl pyrrolidone). Langmuir 24(18):10437–10442.  https://doi.org/10.1021/la801803z CrossRefPubMedGoogle Scholar
  56. 56.
    Anbananthan N, Nagaraja Rao K, Venkatesan VK (1994) Cyclic voltammetric investigations of the reduction of Mo(VI) to Mo(IV) in 1 M sulphuric acid. J Electroanal Chem 374(1-2):207–214.  https://doi.org/10.1016/0022-0728(94)03356-0 CrossRefGoogle Scholar
  57. 57.
    Mendoza-Sánchez B, Brousse T, Ramirez-Castro C, Nicolosi V, Grant PS (2013) An investigation of nanostructured thin film α-MoO3 based supercapacitor electrodes in an aqueous electrolyte. Electrochim Acta 91:253–260.  https://doi.org/10.1016/j.electacta.2012.11.127 CrossRefGoogle Scholar
  58. 58.
    Patil RS, Uplane MD, Patil PS (2006) Structural and optical properties of electrodeposited molybdenum oxide thin films. Appl Surf Sci 252(23):8050–8056.  https://doi.org/10.1016/j.apsusc.2005.10.016 CrossRefGoogle Scholar
  59. 59.
    Castillero P, Rico-Gavira V, López-Santos C, Barranco A, Pérez-Dieste V, Escudero C, Espinós JP, González-Elipe AR (2017) Formation of subsurface W5+species in gasochromic Pt/WO3 thin films exposed to hydrogen. J Phys Chem C 121(29):15719–15727.  https://doi.org/10.1021/acs.jpcc.7b03385 CrossRefGoogle Scholar
  60. 60.
    Luther JM, Jain PK, Ewers T, Alivisatos AP (2011) Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat Mater 10(5):361–366CrossRefPubMedGoogle Scholar
  61. 61.
    Naik GV, Kim J, Boltasseva A (2011) Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Optical Mater Express 1(6):1090–1099.  https://doi.org/10.1364/OME.1.001090 CrossRefGoogle Scholar
  62. 62.
    Manthiram K, Alivisatos AP (2012) Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J Am Chem Soc 134(9):3995–3998.  https://doi.org/10.1021/ja211363w CrossRefPubMedGoogle Scholar
  63. 63.
    Chen Y-H, Franzreb M, Lin R-H, Chen L-L, Chang C-Y, Yu Y-H, Chiang P-C (2009) Platinum-doped TiO2/magnetic poly(methyl methacrylate) microspheres as a novel photocatalyst. Ind Eng Chem Res 48(16):7616–7623.  https://doi.org/10.1021/ie900509t CrossRefGoogle Scholar
  64. 64.
    Jiang J, Liu J, Peng S, Qian D, Luo D, Wang Q, Tian Z, Liu Y (2013) Facile synthesis of α-MoO3 nanobelts and their pseudocapacitive behavior in an aqueous Li2SO4 solution. J Mater Chem A 1(7):2588–2594.  https://doi.org/10.1039/c2ta01120d CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsIsfahan University of TechnologyIsfahanIran

Personalised recommendations