, Volume 13, Issue 6, pp 1889–1895 | Cite as

A Nanoscale Fano Resonator by Graphene-Gold Dipolar Interference

  • Buzheng WeiEmail author
  • Shuisheng Jian


A nanoscale Fano resonator composed of a hybrid graphene disk-gold ring combination is reported in this letter. The inner narrow dipolar resonance of a discrete state induced by graphene interferes with the outside broad dipolar resonance of a continuum state induced by gold, thus forming an asymmetric Fano transparency within the absorption window. The metastructure exhibits a wide tunable band along with an excellent refractive index sensing capability of 2344 nm/RIU. The geometry adjustment modulates the spectral response giving chances to the equivalent of electromagnetically induce transparency. Moreover, the group index exceeds 760 within the transparency window enabling a potential use in slow light or light storage applications. The analytic analysis is in accordance with the numerical simulation results.


Fano resonance Electromagnetically induced transparency Surface plasmon polaritons 


  1. 1.
    Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866CrossRefGoogle Scholar
  2. 2.
    Papasimakis N, Zheludev N I (2009) Metamaterial-induced transparency:sharp fano resonances and slow light. Opt Photon News 20:22CrossRefGoogle Scholar
  3. 3.
    Luk’yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715CrossRefPubMedGoogle Scholar
  4. 4.
    Miroshnichenko A E, Flach S, Kivshar Y S (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82:2257CrossRefGoogle Scholar
  5. 5.
    Fan S, Suh W, Joannopoulos J D (2003) Temporal coupled-mode theory for the Fano resonance in optical resonators. J Opt Soc Am A 20:569CrossRefGoogle Scholar
  6. 6.
    Peng B, Özdemir S K, Chen W, Nori F, Yang L (2014) What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat Commun 5:5082CrossRefPubMedGoogle Scholar
  7. 7.
    Rahmani M, Luk’yanchuk B, Hong M (2013) Fano resonance in novel plasmonic nanostructures. Laser Photonics Rev 7:329CrossRefGoogle Scholar
  8. 8.
    Boller K-J, Imamoğlu A, Harris S E (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66:2593CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhang Z, Ng G I, Hu T, Qiu H, Guo X, Wang W, Rouifed M S, Liu C, Wang H (2017) Conversion between EIT and Fano spectra in a microring-Bragg grating coupled-resonator system. Appl Phys Lett 111:081105CrossRefGoogle Scholar
  10. 10.
    Wei B, Jian S (2017) Graphene based silicon–air grating structure to realize electromagnetically-induced-transparency and slow light effect. J Opt 19:115001CrossRefGoogle Scholar
  11. 11.
    Wei B, Jian S (2017) Analogue of electromagnetically-induced-transparency based on graphene nanotube waveguide. J Phys D: Appl Phys 50:355101CrossRefGoogle Scholar
  12. 12.
    Wei B, Liu H, Ren G, Yang Y, Ye S, Pei L, Jian S (2017) Graphene based silicon–air grating structure to realize electromagnetically-induced-transparency and slow light effect. Phys Lett A 381:160CrossRefGoogle Scholar
  13. 13.
    Wei B, Jian S (2017) Analog of midinfrared electromagnetically induced-transparency and slow rainbow trapping light based on graphene nanoribbon-coated silica substrate. J Nanophotonics 11:026011CrossRefGoogle Scholar
  14. 14.
    Wei B, Jian S (2017) Multiple modes plasmon-induced-transparency and slow light effect in a compact graphene coated nanowire waveguide system. Opt Commun 402:66CrossRefGoogle Scholar
  15. 15.
    Horng J, Chen C-F, Geng B, Girit C, Zhang Y, Hao Z, Bechtel H A, Martin M, Zettl A, Crommie M F, Shen Y R, Wang F (2011) Drude conductivity of Dirac fermions in graphene. Phys. Rev. B 83:165113CrossRefGoogle Scholar
  16. 16.
    Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332:1291CrossRefPubMedGoogle Scholar
  17. 17.
    Jablan M, Buljan H, Soljačič M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80:245435CrossRefGoogle Scholar
  18. 18.
    Bolotin KI, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351CrossRefGoogle Scholar
  19. 19.
    Chen P-Y, Alù A (2011) Atomically thin surface cloak using graphene monolayers. ACS Nano 5:5855CrossRefPubMedGoogle Scholar
  20. 20.
    Falkovsky LA, Pershoguba S S (2007) Optical far-infrared properties of a graphene monolayer and multilayer. Phys Rev B 76:153410CrossRefGoogle Scholar
  21. 21.
    Hanson G W (2008) Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans Antennas Propag 56:747CrossRefGoogle Scholar
  22. 22.
    Chae D-H, Utikal T, Weisenburger S, Giessen H, Klitzing K V, Lippitz M, Smet J (2011) Excitonic fano resonance in free-standing graphene. Nano Lett 11:1379–1382CrossRefPubMedGoogle Scholar
  23. 23.
    Emani N K, Chung T-F, Kildishev A V, Shalaev V M, Chen Y P, Boltasseva A (2014) Electrical modulation of fano resonance in plasmonic nanostructures using graphene. Nano Lett 14:78–82CrossRefPubMedGoogle Scholar
  24. 24.
    Zheng G, Zou X, Chen Y, Xu L, Rao W (2017) Fano resonance in graphene-MoS2 heterostructure-based surface plasmon resonance biosensor and its potential applications. Opt Mater 66:171CrossRefGoogle Scholar
  25. 25.
    Zhang Y, Li T, Zeng B, Zhang H, Lv H, Huang X, Zhang W, Azad A K (2015) A graphene based tunable terahertz sensor with double Fano resonances. Nanoscale 7:12682CrossRefPubMedGoogle Scholar
  26. 26.
    Wei B, Yang Y, Yao S, Xiao H, Jian S (2017) Directional energy focusing on monolayer graphene coupling system. Appl Phys B 123:70CrossRefGoogle Scholar
  27. 27.
    Amin M, Farhat M, Bağcı H (2013) A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications. Sci Rep 3:2105CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Buzheng Wei S J (2017) Realization of super-reflection and cloaking based on graphene–silica metamaterial. Opt Eng 56:56Google Scholar
  29. 29.
    Binfeng Y, Guohua H, Jiawei C, Yiping C (2014) Fano resonances induced by strong interactions between dipole and multipole plasmons in T-shaped nanorod dimer. Plasmonics 9:691CrossRefGoogle Scholar
  30. 30.
    Geim A, Novoselov K (2007) The rise of graphene. Nat Mater 6:183–191CrossRefPubMedGoogle Scholar
  31. 31.
    Novoselov K, Fal’ko V, Colombo L, Gellert P, Schwab M, Kim K (2012) A roadmap for graphene. Nature 490:192–200CrossRefPubMedGoogle Scholar
  32. 32.
    Hanson G W (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103:064302CrossRefGoogle Scholar
  33. 33.
    Lee S H, Choi M, Kim T-T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C-G, Choi S-Y, Zhang X, Min B (2012) Switching terahertz waves with gate-controlled active graphene metamaterials. Nat Mater 11:936–941CrossRefPubMedGoogle Scholar
  34. 34.
    Gao W, Shu J, Qiu C, Xu Q (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6:7806CrossRefPubMedGoogle Scholar
  35. 35.
    Falkovsky LA (2008) Optical properties of graphene. J Phys Conf Ser 129:012004CrossRefGoogle Scholar
  36. 36.
    Falkovsky L A, Varlamov A A (2007) Space-time dispersion of graphene conductivity. Eur Phys J B 56:281CrossRefGoogle Scholar
  37. 37.
    Hao F, Nordlander P, Sonnefraud Y, Van Dorpe P, Maier S A (2009) Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3:643–652CrossRefPubMedGoogle Scholar
  38. 38.
    Wu C, Khanikaev A B, Adato R, Arju N, Yanik A A, Altug H, Shvets G (2012) Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater 11:69–75CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Lab of All Optical Network, Advanced Telecommunication Network of EMC, School of Electronic Information and EngineeringBeijing Jiaotong UniversityBeijingChina
  2. 2.Institute of Lightwave TechnologyBeijing Jiaotong UniversityBeijingChina

Personalised recommendations