, Volume 13, Issue 6, pp 1881–1888 | Cite as

Theoretical Localized Electric Field Enhancement in Tip-Enhanced Spectroscopy Using Multi-Order Radially Polarized Modes

  • Chan Lu
  • Ping Tang
  • Xiaoxu Lu
  • Qinnan Zhang
  • Shengde Liu
  • Jindong Tian
  • Liyun ZhongEmail author


Multi-order radially polarized modes (RPMs), including Bessel-Gaussian, Gaussian, Super Gaussian, and multi-order hollow Gaussian are respectively utilized as the illumination laser to achieve tip-enhanced spectroscopy (TES). Based on the vector diffraction theory and finite difference time domain (FDTD) analysis, we achieve the optimization of RPM illuminated TES system, including the focal spot size, focal depth, and electric field enhancement factor, in which the focal spot size of 5th order hollow Gaussian RPM is smallest (0.54λ) and the focusing depth of super Gaussian RPM is longest (4.71λ). Specially, it is found that the multi-order hollow Gaussian RPM illuminated TES system with the tip cone angle of 45° reveals better focusing ability and 40~60-fold electric field enhancement factor compared to the linearly polarized mode (LPM) illuminated TES system. These results will supply a useful reference for spectral signal enhancement of TES system.


Radially polarized mode (RPM) Tip-enhanced spectroscopy (TES) Finite difference time domain (FDTD) Electric field enhancement factor 


Funding Information

This work was supported by National Natural Science Foundation of China grants (Nos. 61575069, 61475048, 61275015).


  1. 1.
    Stockle RM, Suh YD, Deckert V, Zenobi R (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318(1–3):131–136. CrossRefGoogle Scholar
  2. 2.
    Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2000) Metallized tip amplification of near-field Raman scattering. Opt Commun 183(1–4):333–336. CrossRefGoogle Scholar
  3. 3.
    Hamann HF, Gallagher A, Nesbitt DJ (2000) Near-field fluorescence imaging by localized field enhancement near a sharp probe tip. Appl Phys Lett 76(14):1953–1955. CrossRefGoogle Scholar
  4. 4.
    Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S (2004) Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging. Phys Rev Lett 92(22):220801. CrossRefPubMedGoogle Scholar
  5. 5.
    Hayazawa N, Furusawa K, Taguchi A, Kawata S (2009) One-photon and two-photon excited fluorescence microscopies based on polarization-control: applications to tip-enhanced microscopy. J Appl Phys 106(11):509. CrossRefGoogle Scholar
  6. 6.
    Roy D, Williams C (2010) High resolution Raman imaging of single wall carbon nanotubes using electrochemically etched gold tips and a radially polarized annular beam. J Vac Sci Technol A 28(3):472–475. CrossRefGoogle Scholar
  7. 7.
    Lin J, Er KZJ, Zheng W, Huang Z (2013) Radially polarized tip-enhanced near-field coherent anti-Stokes Raman scattering microscopy for vibrational nano-imaging. Appl Phys Let 103(8):4142–4145. CrossRefGoogle Scholar
  8. 8.
    Mihaljevic J, Hafner C, Meixner AJ (2013) Simulation of a metallic SNOM tip illuminated by a parabolic mirror. Opt Express 21(22):25926–25943. CrossRefPubMedGoogle Scholar
  9. 9.
    Mauser N, Hartschuh A (2014) Tip-enhanced near-field optical microscopy. Chem Soc Rev 43(4):1248–1262. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sukharev M, Seideman T (2009) Optical properties of metal tips for tip-enhanced spectroscopies. J Phys Chem A 113(26):7508–7513. CrossRefPubMedGoogle Scholar
  11. 11.
    Yang Z, Aizpurua J, Xu H (2009) Electromagnetic field enhancement in TERS configurations. J Raman Spectrosc 40(10):1343–1348. CrossRefGoogle Scholar
  12. 12.
    Meng L, Huang T, Wang X, Chen S, Yang Z, Ren B (2015) Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration. Opt Express 23(11):13804–13813. CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang Q, Lu X, Yuan Y, Zhang D, Li J, Zhong L (2016) Concurrent scanning double-tip-enhanced Raman scattering by near-field coupling effect. Plasmonics 11(1):247–252. CrossRefGoogle Scholar
  14. 14.
    Shealy DL, Chao SH (2003) Geometric optics-based design of laser beam shapers. Opt Eng 42(11):3123–3138. CrossRefGoogle Scholar
  15. 15.
    Wu G, Wang F, Cai Y (2014) Generation and self-healing of a radially polarized Bessel-Gauss beam. Phys Rev A 89(4):043807. CrossRefGoogle Scholar
  16. 16.
    Liang J, Jr KR, Becker MF, Heinzen DJ (2009) 1.5% root-mean-square flat-intensity laser beam formed using a binary-amplitude spatial light modulator. Appl Opt 48(10):1955–1962. CrossRefPubMedGoogle Scholar
  17. 17.
    Du X, Yin Y, Zheng G, Guo C, Sun Y, Zhou Z, Bai S, Wang H, Xia Y, Yin J (2014) Generation of a dark hollow beam by a nonlinear ZnSe crystal and its propagation properties in free space: theoretical analysis. Opt Commun 322(7):179–182. CrossRefGoogle Scholar
  18. 18.
    Clifford MA, Arlt J, Courtial J, Dholakia K (1998) High-order Laguerre-Gaussian laser modes for studies of cold atoms. Opt Commun 156(4–6):300–306. CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Suyama T, Ding B (2010) Longer axial trap distance and larger radial trap stiffness using a double-ring radially polarized beam. Opt Lett 35(8):1281–1283. CrossRefPubMedGoogle Scholar
  20. 20.
    Lu S, Yi D, Yan YB, Pang L, Lin GF, Wu MX (2001) Beam-shaping application in laser heat processing. Proc SPIE 4274:452–460. CrossRefGoogle Scholar
  21. 21.
    Hayazawa N, Saito Y, Kawata S (2004) Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy. Appl Phys Lett 85(25):6239–6241. CrossRefGoogle Scholar
  22. 22.
    Hoeppener C, Beams R, Novotny L (2009) Background suppression in near-field optical imaging. Nano Lett 9(2):903–908. CrossRefGoogle Scholar
  23. 23.
    Pashaee F, Hou R, Gobbo P, Workentin MS, Lagugne-Labarthet F (2013) Tip-enhanced Raman spectroscopy of self-assembled thiolated monolayers on flat gold nanoplates using Gaussian-transverse and radially polarized excitations. J Phys Chem C 117(30):15639–15646. CrossRefGoogle Scholar
  24. 24.
    Kazemi-Zanjani N, Vedraine S, Lagugne-Labarthet F (2013) Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light. Opt Express 21(21):25271–25276. CrossRefPubMedGoogle Scholar
  25. 25.
    Wei S-C, Chuang T-L, Wang D-S, Lu H-H, Gu FX, Sung K-B, Lin C-W (2015) Tip-enhanced fluorescence with radially polarized illumination for monitoring loop-mediated isothermal amplification on hepatitis C virus cDNA. J Biomed Opt 20(2):27005. CrossRefPubMedGoogle Scholar
  26. 26.
    Dorn R, Quabis S, Leuchs G (2003) Sharper focus for a radially polarized light beam. Phys Rev Lett 91(23):233901/233901–233901/233904. CrossRefPubMedGoogle Scholar
  27. 27.
    Wang H, Shi L, Lukyanchuk B, Sheppard C, Chong CT (2008) Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat Photonics 2(6):501–505. CrossRefGoogle Scholar
  28. 28.
    Youngworth KS, Brown TG (2000) Focusing of high numerical aperture cylindrical vector beams. Opt Express 7(2):77–87. CrossRefPubMedGoogle Scholar
  29. 29.
    Dorfmueller J, Vogelgesang R, Khunsin W, Rockstuhl C, Etrich C, Kern K (2010) Plasmonic nanowire antennas: experiment, simulation, and theory. Nano Lett 10(9):3596–3603. CrossRefGoogle Scholar
  30. 30.
    Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8(11):867–871. CrossRefPubMedGoogle Scholar
  31. 31.
    Khalavka Y, Becker J, Soennichsen C (2009) Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity. J Am Chem Soc 131(5):1871–1875. CrossRefPubMedGoogle Scholar
  32. 32.
    Krug JT, Sanchez EJ, Xie XS (2002) Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation. J Chem Phys 116(24):10895–10901. CrossRefGoogle Scholar
  33. 33.
    Futamata M, Maruyama Y, Ishikawa M (2003) Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method. J Physical Chem B 107(31):7607–7617. CrossRefGoogle Scholar
  34. 34.
    Tian ZQ, Yang ZL, Ren B, Li JF, Zhang Y, Lin XF, Hu JW, Wu DY (2006) Surface-enhanced Raman scattering from transition metals with special surface morphology and nanoparticle shape. Faraday Discuss 132:159–170. CrossRefPubMedGoogle Scholar
  35. 35.
    Taflove A, Hagness SC (2000) in Computational electrodynamics: the finite-difference time–domain method. Artech HouseGoogle Scholar
  36. 36.
    Lide DR (2009) CRC handbook of chemistry and physics. CRC PressGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chan Lu
    • 1
  • Ping Tang
    • 1
  • Xiaoxu Lu
    • 1
  • Qinnan Zhang
    • 1
  • Shengde Liu
    • 1
  • Jindong Tian
    • 2
  • Liyun Zhong
    • 1
    Email author
  1. 1.Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and DevicesSouth China Normal UniversityGuangzhouChina
  2. 2.Shenzhen Key Laboratory of Micro-Nano Measuring and Imaging in Biomedical Optics, College of Optoelectronic EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations