, Volume 13, Issue 6, pp 1867–1879 | Cite as

Excitation of Multiple Surface Plasmon-Polaritons by a Metal Layer Inserted in an Equichiral Sculptured Thin Film

  • S. H. Hosseininezhad
  • F. BabaeiEmail author


Excitation of multiple surface plasmon-polaritons (SPPs) by an equichiral sculptured thin film with a metal layer defect was studied theoretically in the Sarid configuration, using the transfer matrix method. Multiple SPP modes were distinguished from waveguide modes in optical absorption for p-polarized plane wave. The degree of localization of multiple SPP waves was investigated by calculation of the time-averaged Poynting vector. The results showed that the long-range and short-range SPP waves can simultaneously be excited at both interfaces of metal core in this proposed structure which may be used in a broad range of sensing applications.


Surface plasmon-polariton Optical absorption Sculptured thin film 



The authors would like to express their deep gratitude to the University of Qom and Iran National Science Foundation (INSF) for supporting this work.


  1. 1.
    Polo JA, Lakhtakia A (2011) Surface electromagnetic waves: a review. Laser and Photonics Rev 5(2):234–246. CrossRefGoogle Scholar
  2. 2.
    Swiontek SE, Pulsifer DP, Lakhtakia A (2013) Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform. Sci Rep 3(1):1409. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Pulsifer DP, Lakhtakia A (2009) Multiple surface plasmon polariton waves .Electron Lett 45:1137–1138. CrossRefGoogle Scholar
  4. 4.
    Mackay TG, Lakhtakia A (2012) Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing. IEEE Sensors J 12(2):273–280. CrossRefGoogle Scholar
  5. 5.
    Motyka MA, Lakhtakia A (2008) Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Journal of Nanophotonics 2(1):021910. CrossRefGoogle Scholar
  6. 6.
    Faryad M, Lakhtakia A (2011) Grating-coupled excitation of multiple surface plasmon-polariton waves. Phys Rev A 84(3):033852. CrossRefGoogle Scholar
  7. 7.
    Robbie K, Brett MJ (1997) Sculptured thin films and glancing angle deposition: growth mechanics and applications. J Vac Sci Technol A 15(3):1460–1465. CrossRefGoogle Scholar
  8. 8.
    Robbie K, Sit JC, Brett MJ (1998) Advanced techniques for glancing angle deposition. J Vac Sci Technol B 16(3):1115. CrossRefGoogle Scholar
  9. 9.
    Robbie K, Brett MJ, Lakhtakia A (1996) Chiral sculptured thin films. Nature 384(6610):616. CrossRefGoogle Scholar
  10. 10.
    Hodgkinson IJ, Lakhtakia A, hong Wu Q, Silva LD, McCall MW (2004) Ambichiral, equichiral and finely chiral layered structures. Opt Commun 239(4-6):353–358. CrossRefGoogle Scholar
  11. 11.
    van Popta AC, Brett MJ, Sit JC (2005) Double-handed circular Bragg phenomena in polygonal helix thin films. J Appl Phys 98(8):083517. CrossRefGoogle Scholar
  12. 12.
    Mackay TG, Polo JA, Lakhtakia A (2013) Electromagnetic surface waves: a modern perspective. Elsevier, WalthamGoogle Scholar
  13. 13.
    Faryad M, Lakhtakia A (2011) Propagation of surface waves and waveguide modes guided by a dielectric slab inserted in a sculptured nematic thin film. Phys Rev A 83(1):013814. CrossRefGoogle Scholar
  14. 14.
    Krenn JR, Weeber J-C (2004) Surface plasmon polaritons in metal stripes and wires. Phil Trans R Soc Lond A 362:739–756 CrossRefGoogle Scholar
  15. 15.
    Sarid D (1981) Long-range surface-plasma waves on very thin metal films. Phys Rev Lett 47:1927–1930 CrossRefGoogle Scholar
  16. 16.
    Sarid D, Challener WA (2010) Modern introduction to surface plasmons: theory, Mathematica modeling and applications. University Press, Cambridge. CrossRefGoogle Scholar
  17. 17.
    Berini P (2009) Long-range surface plasmon polaritons. Adv Opt Photon 1(3):484. CrossRefGoogle Scholar
  18. 18.
    Lakhtakia A, Messier R (1997) Sculptured thin films - I. Concepts. Mater Res Innov 1(3):145–148. CrossRefGoogle Scholar
  19. 19.
    Messier R, Lakhtakia A (1999) Sculptured thin films — II. Experiments and applications. Mater Res Innov 2:217–222 CrossRefGoogle Scholar
  20. 20.
    Fuzi Y, Sambles J, Bradberry GW (1991) Long-range surface modes supported by thin films. Phys Rev B 44:5855 CrossRefGoogle Scholar
  21. 21.
    Faryad M, Lakhtakia A (2010) Surface plasmon–polariton wave propagation guided by a metal slab in a sculptured nematic thin film. J Opt 12(8):085102. CrossRefGoogle Scholar
  22. 22.
    Polo JA, Mackay TG, Lakhtakia A (2011) Mapping multiple surface-plasmon-polariton-wave modes at the interface of a metal and a chiral sculptured thin film. J Opt SocAm B 28(11):2656. CrossRefGoogle Scholar
  23. 23.
    Quail JC, Rako JG, Simon HJ (1983) Long-range surface-plasmon modes in silver and aluminum films. OptLett 8:377–379 Google Scholar
  24. 24.
    Craig AE, Olson GA, Sarid D (1983) Experimental observation of the long-range surface-plasmon polariton. Opt.Lett 8(7):380–382. CrossRefPubMedGoogle Scholar
  25. 25.
    Dohi H, Kuwamura Y, Fukui M, Tada O (1984) Long-range surface Plasmon Polaritons in metal films bounded by similar-refractive-index materials. J Phys Soc Jpn 53(536):2828–2832 CrossRefGoogle Scholar
  26. 26.
    Pulsifer DP, Faryad M, Lakhtakia A (2013) Observation of the Dyakonov-Tamm wave. Phys RevLett 111(538):243902 Google Scholar
  27. 27.
    Hodgkinson I, Hong Wu Q, Hazel J (1998) Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide. Appl Opt 37:2653–2659 CrossRefPubMedGoogle Scholar
  28. 28.
    Lakhtakia A, Jen Y-J, Lin C-F (2009) Multiple trains of same-color surface plasmonpolaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: experimental evidence.J Nanophotonics 3:033506. CrossRefGoogle Scholar
  29. 29.
    Gospodyn J, Sit JC (2006) Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry. Opt Mater 9:318–325 CrossRefGoogle Scholar
  30. 30.
    Mansuripur M, Zakharian AR, Moloney JV (2007) Surface plasmon polaritons on metallic surfaces. Opt Photon News 18(4):44. CrossRefGoogle Scholar
  31. 31.
    Lakhtakia A (2007) Surface-plasmon wave at the planar interface of a metal film and a structurally chiral medium. Opt Commun 279(2):291–297. CrossRefGoogle Scholar
  32. 32.
    Babaei F, Omidi M (2013) Characteristics of plasmonic at a metal/chiral sculptured thin film interface. Plasmonics 8(2):1051–1057. CrossRefGoogle Scholar
  33. 33.
    Babaei F, Shafiian-Barzoki S (2014) Surface plasmon polariton propagation at the interface of a metal and an ambichiral nanostructured medium. Plasmonics 9(3):595–605. CrossRefGoogle Scholar
  34. 34.
    Babaei F, Shafiian-Barzoki S (2014) Surface plasmon polariton modes at interface of a metal and an ambichiral sculptured thin film. Plasmonics 9(6):1481–1489. CrossRefGoogle Scholar
  35. 35.
    Lakhtakia A, Messier R (2005) Sculptured thin films: nanoengineered morphology and optics. SPIE, USACrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of QomQomIran

Personalised recommendations