Advertisement

Plasmonics

, Volume 13, Issue 6, pp 1867–1879 | Cite as

Excitation of Multiple Surface Plasmon-Polaritons by a Metal Layer Inserted in an Equichiral Sculptured Thin Film

  • S. H. Hosseininezhad
  • F. Babaei
Article

Abstract

Excitation of multiple surface plasmon-polaritons (SPPs) by an equichiral sculptured thin film with a metal layer defect was studied theoretically in the Sarid configuration, using the transfer matrix method. Multiple SPP modes were distinguished from waveguide modes in optical absorption for p-polarized plane wave. The degree of localization of multiple SPP waves was investigated by calculation of the time-averaged Poynting vector. The results showed that the long-range and short-range SPP waves can simultaneously be excited at both interfaces of metal core in this proposed structure which may be used in a broad range of sensing applications.

Keywords

Surface plasmon-polariton Optical absorption Sculptured thin film 

Notes

Acknowledgements

The authors would like to express their deep gratitude to the University of Qom and Iran National Science Foundation (INSF) for supporting this work.

References

  1. 1.
    Polo JA, Lakhtakia A (2011) Surface electromagnetic waves: a review. Laser and Photonics Rev 5(2):234–246.  https://doi.org/10.1002/lpor.200900050 CrossRefGoogle Scholar
  2. 2.
    Swiontek SE, Pulsifer DP, Lakhtakia A (2013) Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform. Sci Rep 3(1):1409.  https://doi.org/10.1038/srep01409 CrossRefGoogle Scholar
  3. 3.
    Pulsifer DP, Lakhtakia A (2009) Multiple surface plasmon polariton waves .Electron Lett 45:1137–1138.  https://doi.org/10.1049/el.2009.2049 CrossRefGoogle Scholar
  4. 4.
    Mackay TG, Lakhtakia A (2012) Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing. IEEE Sensors J 12(2):273–280.  https://doi.org/10.1109/JSEN.2010.2067448 CrossRefGoogle Scholar
  5. 5.
    Motyka MA, Lakhtakia A (2008) Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Journal of Nanophotonics 2(1):021910.  https://doi.org/10.1117/1.3033757 CrossRefGoogle Scholar
  6. 6.
    Faryad M, Lakhtakia A (2011) Grating-coupled excitation of multiple surface plasmon-polariton waves. Phys Rev A 84(3):033852.  https://doi.org/10.1103/PhysRevA.84.033852 CrossRefGoogle Scholar
  7. 7.
    Robbie K, Brett MJ (1997) Sculptured thin films and glancing angle deposition: growth mechanics and applications. J Vac Sci Technol A 15(3):1460–1465.  https://doi.org/10.1116/1.580562 CrossRefGoogle Scholar
  8. 8.
    Robbie K, Sit JC, Brett MJ (1998) Advanced techniques for glancing angle deposition. J Vac Sci Technol B 16(3):1115.  https://doi.org/10.1116/1.590019 CrossRefGoogle Scholar
  9. 9.
    Robbie K, Brett MJ, Lakhtakia A (1996) Chiral sculptured thin films. Nature 384(6610):616.  https://doi.org/10.1038/384616a0 CrossRefGoogle Scholar
  10. 10.
    Hodgkinson IJ, Lakhtakia A, hong Wu Q, Silva LD, McCall MW (2004) Ambichiral, equichiral and finely chiral layered structures. Opt Commun 239(4-6):353–358.  https://doi.org/10.1016/j.optcom.2004.06.005 CrossRefGoogle Scholar
  11. 11.
    van Popta AC, Brett MJ, Sit JC (2005) Double-handed circular Bragg phenomena in polygonal helix thin films. J Appl Phys 98(8):083517.  https://doi.org/10.1063/1.2115092 CrossRefGoogle Scholar
  12. 12.
    Mackay TG, Polo JA, Lakhtakia A (2013) Electromagnetic surface waves: a modern perspective. Elsevier, WalthamGoogle Scholar
  13. 13.
    Faryad M, Lakhtakia A (2011) Propagation of surface waves and waveguide modes guided by a dielectric slab inserted in a sculptured nematic thin film. Phys Rev A 83(1):013814.  https://doi.org/10.1103/PhysRevA.83.013814 CrossRefGoogle Scholar
  14. 14.
    Krenn JR, Weeber J-C (2004) Surface plasmon polaritons in metal stripes and wires. Phil Trans R Soc Lond A 362:739–756  https://doi.org/10.1098/rsta.2003.1344 CrossRefGoogle Scholar
  15. 15.
    Sarid D (1981) Long-range surface-plasma waves on very thin metal films. Phys Rev Lett 47:1927–1930  https://doi.org/10.1103/PhysRevLett.47.1927 CrossRefGoogle Scholar
  16. 16.
    Sarid D, Challener WA (2010) Modern introduction to surface plasmons: theory, Mathematica modeling and applications. University Press, Cambridge.  https://doi.org/10.1017/CBO9781139194846 CrossRefGoogle Scholar
  17. 17.
    Berini P (2009) Long-range surface plasmon polaritons. Adv Opt Photon 1(3):484.  https://doi.org/10.1364/AOP.1.000484 CrossRefGoogle Scholar
  18. 18.
    Lakhtakia A, Messier R (1997) Sculptured thin films - I. Concepts. Mater Res Innov 1(3):145–148.  https://doi.org/10.1007/s100190050032 CrossRefGoogle Scholar
  19. 19.
    Messier R, Lakhtakia A (1999) Sculptured thin films — II. Experiments and applications. Mater Res Innov 2:217–222  https://doi.org/10.1007/s100190050088 CrossRefGoogle Scholar
  20. 20.
    Fuzi Y, Sambles J, Bradberry GW (1991) Long-range surface modes supported by thin films. Phys Rev B 44:5855  https://doi.org/10.1103/PhysRevB.44.5855 CrossRefGoogle Scholar
  21. 21.
    Faryad M, Lakhtakia A (2010) Surface plasmon–polariton wave propagation guided by a metal slab in a sculptured nematic thin film. J Opt 12(8):085102.  https://doi.org/10.1088/2040-8978/12/8/085102 CrossRefGoogle Scholar
  22. 22.
    Polo JA, Mackay TG, Lakhtakia A (2011) Mapping multiple surface-plasmon-polariton-wave modes at the interface of a metal and a chiral sculptured thin film. J Opt SocAm B 28(11):2656.  https://doi.org/10.1364/JOSAB.28.002656 CrossRefGoogle Scholar
  23. 23.
    Quail JC, Rako JG, Simon HJ (1983) Long-range surface-plasmon modes in silver and aluminum films. OptLett 8:377–379  https://doi.org/10.1364/OL.8.000377 Google Scholar
  24. 24.
    Craig AE, Olson GA, Sarid D (1983) Experimental observation of the long-range surface-plasmon polariton. Opt.Lett 8(7):380–382.  https://doi.org/10.1364/OL.8.000380 CrossRefGoogle Scholar
  25. 25.
    Dohi H, Kuwamura Y, Fukui M, Tada O (1984) Long-range surface Plasmon Polaritons in metal films bounded by similar-refractive-index materials. J Phys Soc Jpn 53(536):2828–2832  https://doi.org/10.1143/JPSJ.53.2828 CrossRefGoogle Scholar
  26. 26.
    Pulsifer DP, Faryad M, Lakhtakia A (2013) Observation of the Dyakonov-Tamm wave. Phys RevLett 111(538):243902  https://doi.org/10.1103/PhysRevLett.111.243902 Google Scholar
  27. 27.
    Hodgkinson I, Hong Wu Q, Hazel J (1998) Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide. Appl Opt 37:2653–2659  https://doi.org/10.1364/AO.37.002653 CrossRefGoogle Scholar
  28. 28.
    Lakhtakia A, Jen Y-J, Lin C-F (2009) Multiple trains of same-color surface plasmonpolaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: experimental evidence.J Nanophotonics 3:033506.  https://doi.org/10.1117/1.3249629 CrossRefGoogle Scholar
  29. 29.
    Gospodyn J, Sit JC (2006) Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry. Opt Mater 9:318–325  https://doi.org/10.1016/j.optmat.2005.10.004 CrossRefGoogle Scholar
  30. 30.
    Mansuripur M, Zakharian AR, Moloney JV (2007) Surface plasmon polaritons on metallic surfaces. Opt Photon News 18(4):44.  https://doi.org/10.1364/OPN.18.4.000044 CrossRefGoogle Scholar
  31. 31.
    Lakhtakia A (2007) Surface-plasmon wave at the planar interface of a metal film and a structurally chiral medium. Opt Commun 279(2):291–297.  https://doi.org/10.1016/j.optcom.2007.07.026 CrossRefGoogle Scholar
  32. 32.
    Babaei F, Omidi M (2013) Characteristics of plasmonic at a metal/chiral sculptured thin film interface. Plasmonics 8(2):1051–1057.  https://doi.org/10.1007/s11468-013-9508-z CrossRefGoogle Scholar
  33. 33.
    Babaei F, Shafiian-Barzoki S (2014) Surface plasmon polariton propagation at the interface of a metal and an ambichiral nanostructured medium. Plasmonics 9(3):595–605.  https://doi.org/10.1007/s11468-014-9670-y CrossRefGoogle Scholar
  34. 34.
    Babaei F, Shafiian-Barzoki S (2014) Surface plasmon polariton modes at interface of a metal and an ambichiral sculptured thin film. Plasmonics 9(6):1481–1489.  https://doi.org/10.1007/s11468-014-9767-3 CrossRefGoogle Scholar
  35. 35.
    Lakhtakia A, Messier R (2005) Sculptured thin films: nanoengineered morphology and optics. SPIE, USACrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of QomQomIran

Personalised recommendations