Advertisement

Plasmonics

, Volume 13, Issue 6, pp 1853–1859 | Cite as

Tunable Plasmonic Absorber Based on TiN-Nanosphere Liquid Crystal Hybrid in Visible and Near-Infrared Regions

  • Reza Rashiditabar
  • Najmeh Nozhat
  • Mohammad Sadegh Zare
Article
  • 199 Downloads

Abstract

In this paper, a tunable plasmonic absorber based on TiN-nanosphere/liquid crystal (LC) nanocomposite in visible and near-infrared regions is proposed. TiN-nanosphere/LC nanocomposite is a combination of titanium nitride (TiN) nanospheres dispersed in a host of LC and plays the main role in post fabrication tunability. The proposed absorber has three more than 90% absorption peaks and the absorption tunability of about 76 nm. It is shown that TiN-nanospheres are able to support localized surface plasmon resonance (LSPR). The Maxwell-Garnett theory is utilized to approximate the permittivity of the composite structure. Also, the effect of geometric parameters on the absorption is studied. Moreover, a single sheet of graphene is utilized to compensate the decrement of the absorption caused by the geometric parameters.

Keywords

Plasmonics Absorption Effective medium theory Liquid crystals Surface plasmons Resonance 

References

  1. 1.
    Meshram M, Agrawal NK, Sinha B, Misra P (2004) Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J Magn Magn Mater 271(2-3):207–214.  https://doi.org/10.1016/j.jmmm.2003.09.045 CrossRefGoogle Scholar
  2. 2.
    Landy NI, Sajuyigbe S, Mock J, Smith D, Padilla W (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402.  https://doi.org/10.1103/PhysRevLett.100.207402 CrossRefGoogle Scholar
  3. 3.
    Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96(25):251104.  https://doi.org/10.1063/1.3442904 CrossRefGoogle Scholar
  4. 4.
    Wang Y (1995) Voltage induced color selective absorption with surface plasmons. Appl Phys Lett 67(19):2759–2761.  https://doi.org/10.1063/1.114584 CrossRefGoogle Scholar
  5. 5.
    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348.  https://doi.org/10.1021/nl9041033 CrossRefGoogle Scholar
  6. 6.
    Tittl A, Mai P, Taubert R, Dregely D, Liu N, Giessen H (2011) Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. Nano Lett 11(10):4366–4369.  https://doi.org/10.1021/nl202489g CrossRefGoogle Scholar
  7. 7.
    Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2:1–7.  https://doi.org/10.1038/ncomms1528 CrossRefGoogle Scholar
  8. 8.
    Cai Y, Zhu J, Liu QH, Lin T, Zhou J, Ye L, Cai Z (2015) Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits. Opt Express 23(25):32318–32328.  https://doi.org/10.1364/OE.23.032318 CrossRefGoogle Scholar
  9. 9.
    Kang Z, Guo X, Jia Z, Xu Y, Liu L, Zhao D, Qin G, Qin W (2013) Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser. Opt Mater Express 3(11):1986–1991.  https://doi.org/10.1364/OME.3.001986 CrossRefGoogle Scholar
  10. 10.
    Si G, Zhao Y, Leong ESP, Liu YJ (2014) Liquid-crystal-enabled active plasmonics: a review. Materials 7(2):1296–1317.  https://doi.org/10.3390/ma7021296 CrossRefGoogle Scholar
  11. 11.
    Taylor T, Arora S, Fergason J (1970) Temperature-dependent tilt angle in the smectic C phase of a liquid crystal. Phys Rev Lett 25(11):722–726.  https://doi.org/10.1103/PhysRevLett.25.722 CrossRefGoogle Scholar
  12. 12.
    Isić G, Vasić B, Zografopoulos DC, Beccherelli R, Gajić R (2015) Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals. Phys Rev Appl 3(6):064007.  https://doi.org/10.1103/PhysRevApplied.3.064007 CrossRefGoogle Scholar
  13. 13.
    Su Z, Yin J, Zhao X (2015) Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption. Sci Rep 5(1):16698.  https://doi.org/10.1038/srep16698 CrossRefGoogle Scholar
  14. 14.
    Spector M, Heiney P, Naciri J, Weslowski B, Holt D, Shashidhar R (2000) Electroclinic liquid crystals with large induced tilt angle and small layer contraction. Phys Rev E 61(2):1579–1584.  https://doi.org/10.1103/PhysRevE.61.1579 CrossRefGoogle Scholar
  15. 15.
    Zhao Y, Hao Q, Ma Y, Lu M, Zhang B, Lapsley M, Khoo IC, Jun Huang T (2012) Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array. Appl Phys Lett 100(5):053119.  https://doi.org/10.1063/1.3681808 CrossRefGoogle Scholar
  16. 16.
    Fusco V, Cahill R, Hu W, Simms S (2008) Ultra-thin tunable microwave absorber using liquid crystals. Electron Lett 44(1):37–38.  https://doi.org/10.1049/el:20082191 CrossRefGoogle Scholar
  17. 17.
    Shrekenhamer D, Chen W-C, Padilla WJ (2013) Liquid crystal tunable metamaterial absorber. Phys Rev Lett 110(17):177403.  https://doi.org/10.1103/PhysRevLett.110.177403 CrossRefGoogle Scholar
  18. 18.
    Sihvola AH, Kong JA (1988) Effective permittivity of dielectric mixtures. IEEE Trans Geosci Remote 26:420–429.  https://doi.org/10.1109/36.3045 CrossRefGoogle Scholar
  19. 19.
    Garnett JM (1906) Colours in metal glasses, in metallic films, and in metallic solutions. II. Philos Trans R Soc Lond 76(387-401):370–373.  https://doi.org/10.1098/rsta.1906.0007 CrossRefGoogle Scholar
  20. 20.
    Garcıa M, Llopis J, Paje S (1999) A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol–gel films. Chem Phys Lett 315(5-6):313–320.  https://doi.org/10.1016/S0009-2614(99)01206-3 CrossRefGoogle Scholar
  21. 21.
    Granqvist C, Hunderi O (1978) Conductivity of inhomogeneous materials: effective-medium theory with dipole-dipole interaction. Phys Rev B 18(4):1554–1561.  https://doi.org/10.1103/PhysRevB.18.1554 CrossRefGoogle Scholar
  22. 22.
    Gao D, Gao L (2010) Goos–Hänchen shift of the reflection from nonlinear nanocomposites with electric field tunability. Appl Phys Lett 97(4):041903.  https://doi.org/10.1063/1.3470000 CrossRefGoogle Scholar
  23. 23.
    Yang Y, Wang W, Boulesbaa A, Kravchenko II, Briggs DP, Puretzky A, Geohegan D, Valentine J (2015) Nonlinear fano-resonant dielectric metasurfaces. Nano Lett 15(11):7388–7393.  https://doi.org/10.1021/acs.nanolett.5b02802 CrossRefGoogle Scholar
  24. 24.
    Gao D, Gao H, Qiu CW (2011) Birefringence-induced polarization-independent and nearly all-angle transparency through a metallic film. EPL-Europhys Lett 95:34004.  https://doi.org/10.1209/0295-5075/95/34004 CrossRefGoogle Scholar
  25. 25.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191.  https://doi.org/10.1038/nmat1849 CrossRefGoogle Scholar
  26. 26.
    Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308.  https://doi.org/10.1126/science.1156965 CrossRefGoogle Scholar
  27. 27.
    Alaee R, Farhat M, Rockstuhl C, Lederer F (2012) A perfect absorber made of a graphene micro-ribbon metamaterial. Opt Express 20(27):28017–28024.  https://doi.org/10.1364/OE.20.028017 CrossRefGoogle Scholar
  28. 28.
    Thongrattanasiri S, Koppens FH, De Abajo FJG (2012) Complete optical absorption in periodically patterned graphene. Phys Rrev Lett 108(4):047401.  https://doi.org/10.1103/PhysRevLett.108.047401 CrossRefGoogle Scholar
  29. 29.
    Yao G, Ling F, Yue J, Luo C, Ji J, Yao J (2016) Dual-band tunable perfect metamaterial absorber in the THz range. Opt Express 24(2):1518–1527.  https://doi.org/10.1364/OE.24.001518 CrossRefGoogle Scholar
  30. 30.
    Zhao B, Zhao J, Zhang Z (2014) Enhancement of near-infrared absorption in graphene with metal gratings. Appl Phys Lett 105(3):031905.  https://doi.org/10.1063/1.4890624 CrossRefGoogle Scholar
  31. 31.
    Lu H, Cumming BP, Gu M (2015) Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths. Opt Lett 40(15):3647–3650.  https://doi.org/10.1364/OL.40.003647. CrossRefGoogle Scholar
  32. 32.
    Zare MS, Nozhat N, Rashiditabar R (2016) Improving the absorption of a plasmonic absorber using a single layer of graphene at telecommunication wavelengths. Appl Opt 55(34):9764–9768.  https://doi.org/10.1364/AO.55.009764 CrossRefGoogle Scholar
  33. 33.
    Zare MS, Nozhat N, Rashiditabar R (2017) Tunable graphene based plasmonic absorber with grooved metal film in near infrared region. Opt Commun 398:56–61.  https://doi.org/10.1016/j.optcom.2017.04.025. CrossRefGoogle Scholar
  34. 34.
    Naik GV, Schroeder JL, Ni X, Kildishev AV, Sands TD, Boltasseva A (2012) Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt Mater Express 2(4):478–489.  https://doi.org/10.1364/OME.2.000478 CrossRefGoogle Scholar
  35. 35.
    Li J, Wu S-T, Brugioni S, Meucci R, Faetti S (2005) Infrared refractive indices of liquid crystals. J Appl Phys 97(7):073501.  https://doi.org/10.1063/1.1877815 CrossRefGoogle Scholar
  36. 36.
    Khoo I, Werner D, Liang X, Diaz A, Weiner B (2006) Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes. Opt Lett 31(17):2592–2594.  https://doi.org/10.1364/OL.31.002592 CrossRefGoogle Scholar
  37. 37.
    Asadi R, Malek-Mohammad M, Khorasani S (2011) All optical switch based on Fano resonance in metal nanocomposite photonic crystals. Opt Commun 284(8):2230–2235.  https://doi.org/10.1016/j.optcom.2010.12.085 CrossRefGoogle Scholar
  38. 38.
    Reinholdt A, Pecenka R, Pinchuk A, Runte S, Stepanov A, Weirich TE, Kreibig U (2004) Structural, compositional, optical and colorimetric characterization of TiN-nanoparticles. Eur Phys J D-At Mol Opt Plasma Phys 31(1):69–76.  https://doi.org/10.1140/epjd/e2004-00129-8 CrossRefGoogle Scholar
  39. 39.
    Johnson PB, Christy R-W (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379.  https://doi.org/10.1103/PhysRevB.6.4370 CrossRefGoogle Scholar
  40. 40.
    Pflüger J, Fink J, Weber W, Bohnen K, Crecelius G (1984) Dielectric properties of TiC x, TiN x, VC x, and VN x from 1.5 to 40 eV determined by electron-energy-loss spectroscopy. Phys Rev B 30(3):1155–1163.  https://doi.org/10.1103/PhysRevB.30.1155 CrossRefGoogle Scholar
  41. 41.
    Gao L, Lemarchand F, Lequime M (2012) Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering. Opt Express 20(14):15734–15751.  https://doi.org/10.1364/OE.20.015734 CrossRefGoogle Scholar
  42. 42.
    Hibbins AP, Sambles JR, Lawrence CR (1998) Surface plasmon-polariton study of the optical dielectric function of titanium nitride. J Mod Opt 45(10):2051–2062.  https://doi.org/10.1080/09500349808231742 CrossRefGoogle Scholar
  43. 43.
    Patsalas P, Logothetidis S (2001) Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films. J Appl Phys 90(9):4725–4734.  https://doi.org/10.1063/1.1403677 CrossRefGoogle Scholar
  44. 44.
    Hanson GW (2008a) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):064302.  https://doi.org/10.1063/1.2891452 CrossRefGoogle Scholar
  45. 45.
    Hanson GW (2008b) Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE T Antenn Propag 56(3):747–757.  https://doi.org/10.1109/TAP.2008.917005 CrossRefGoogle Scholar
  46. 46.
    Yang D-K (2014) Fundamentals of liquid crystal devices. John Wiley & Sons, Hoboken.  https://doi.org/10.1002/9781118751992 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Reza Rashiditabar
    • 1
  • Najmeh Nozhat
    • 1
  • Mohammad Sadegh Zare
    • 1
  1. 1.Department of Electrical EngineeringShiraz University of TechnologyShirazIran

Personalised recommendations