Advertisement

Plasmonics

, Volume 13, Issue 6, pp 1843–1852 | Cite as

A Compact Design of Multiband Terahertz Metamaterial Absorber with Frequency and Polarization Tunability

  • Saikat Chandra Bakshi
  • Debasis Mitra
  • Laxmikant Minz
Article
  • 352 Downloads

Abstract

A new and simple design of quad-band metamaterial absorber for terahertz frequency has been proposed. The unit cell of the absorber is composed of a top metallic patch having H-shaped slot and a ground metallic plane, both separated by a dielectric layer. The proposed design is capable of providing four distinct absorption peaks over at 0.81, 1.98, 3.25, and 3.50 THz. Our design is a step ahead of the previously proposed terahertz absorbers for its simplistic design approach which removes the fabrication difficulty. Interestingly, rather placing multiple resonators in a single unit cell, we able to accommodate multiple orders of resonances in the proposed design using only a single metallic structure to achieve multiband absorbance. The sensing performance of the absorber in terms of surrounding index is also analyzed. Moreover, we have shown how the proposed structure can be easily converted into a frequency tunable absorber using a simple stub without changing the overall geometry of the absorber. This fast and easy frequency tunability feature is an additional advantage over the simple design of the structure. Also, we lead our work to its upgradation into a polarization tunable absorber where the absorption frequencies are controllable by the polarization of the incident light. The vibrant design of the proposed absorber is expected to find application in detection, imaging, radar cross-section (RCS) reduction, and sensing-related activities.

Keywords

Frequency tunable Metamaterial absorber Multiband Polarization tunable 

Notes

Acknowledgements

For research support, D. Mitra acknowledges the Visvesvaraya Young Faculty research fellowship award, under MeitY, Govt. of India.

References

  1. 1.
    Landy N, Sajuyigbe S, Mock J, Smith D, Padilla W (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20).  https://doi.org/10.1103/PhysRevLett.100.207402
  2. 2.
    Khuyen B, Tung B, Yoo Y, Kim Y, Kim K, Chen L et al (2017) Miniaturization for ultrathin metamaterial perfect absorber in the VHF band. Sci Rep 7:45151.  https://doi.org/10.1038/srep45151 CrossRefPubMedGoogle Scholar
  3. 3.
    Chen J, Huang X, Zerihun G, Hu Z, Wang S, Wang G, Hu X, Liu M (2015) Polarization-independent, thin, broadband metamaterial absorber using double-circle rings loaded with lumped resistances. J Electron Mater 44(11):4269–4274.  https://doi.org/10.1007/s11664-015-3951-x CrossRefGoogle Scholar
  4. 4.
    Ghosh S, Srivastava K (2017) Polarization-insensitive dual-band switchable absorber with independent switching. IEEE Antennas Wirel Propag Lett 16:1687–1690.  https://doi.org/10.1109/LAWP.2017.2665966 CrossRefGoogle Scholar
  5. 5.
    Hu D, Wang H, Tang Z, Zhang X, Zhu Q (2016) Design of four-band terahertz perfect absorber based on a simple #-shaped metamaterial resonator. Appl Phys A 122(9).  https://doi.org/10.1007/s00339-016-0357-4
  6. 6.
    Wen Y, Ma W, Bailey J, Matmon G, Yu X (2015) Broadband terahertz metamaterial absorber based on asymmetric resonators with perfect absorption. IEEE Trans Terahertz Sci Technol 5(3):406–411.  https://doi.org/10.1109/TTHZ.2015.2401392 CrossRefGoogle Scholar
  7. 7.
    Wang B (2017) Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs. IEEE J Sel Top Quantum Electron 23(4):1–7Google Scholar
  8. 8.
    Grant J, Ma Y, Saha S, Khalid A, Cumming D (2011) Polarization insensitive, broadband terahertz metamaterial absorber. Opt Lett 36(17):3476–3478.  https://doi.org/10.1364/OL.36.003476 CrossRefPubMedGoogle Scholar
  9. 9.
    Ding F, Cui Y, Ge X, Jin Y, He S (2012) Ultra-broadband microwave metamaterial absorber. Appl Phys Lett 100(10):103506.  https://doi.org/10.1063/1.3692178 CrossRefGoogle Scholar
  10. 10.
    Park J, Van Tuong P, Rhee J, Kim K, Jang W, Choi E et al (2013) Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt Express 21(8):9691–9702.  https://doi.org/10.1364/OE.21.009691 CrossRefPubMedGoogle Scholar
  11. 11.
    Wang B, Zhai X, Wang G, Huang W, Wang L (2015) Design of a four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics J 7(1):1–8Google Scholar
  12. 12.
    Ma Y, Chen Q, Grant J, Saha S, Khalid A, Cumming D (2011) A terahertz polarization insensitive dual band metamaterial absorber. Opt Lett 36(6):945–947.  https://doi.org/10.1364/OL.36.000945 CrossRefPubMedGoogle Scholar
  13. 13.
    Shen X, Cui T, Zhao J, Ma H, Jiang W, Li H (2011) Polarization-independent wide-angle triple-band metamaterial absorber. Opt Express 19(10):9401–9407.  https://doi.org/10.1364/OE.19.009401 CrossRefPubMedGoogle Scholar
  14. 14.
    Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Jun Cui T (2012) Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl Phys Lett 101(15):154102.  https://doi.org/10.1063/1.4757879 CrossRefGoogle Scholar
  15. 15.
    Watts C, Liu X, Padilla W (2012) Metamaterial electromagnetic wave absorbers. Adv Mater 24(23):OP98–OP120.  https://doi.org/10.1002/adma.201200674 CrossRefPubMedGoogle Scholar
  16. 16.
    Qi-wei Ye, Hai Lin, Xiao-qin Chen, & He-lin Yang (2011) A tunable metamaterial absorber made by micro-gaps structures. Proceedings of 2011 Cross Strait Quad-Regional Radio Science and Wireless Technology ConferenceGoogle Scholar
  17. 17.
    Zhu B, Huang C, Feng Y, Zhao J, Jiang T (2010) Dual band switchable metamaterial electromagnetic absorber. Prog Electromagn Res B 24:121–129.  https://doi.org/10.2528/PIERB10070802 CrossRefGoogle Scholar
  18. 18.
    Huang Y, Tian Y, Wen G, Zhu W (2013) Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration. J Opt 15(5):055104.  https://doi.org/10.1088/2040-8978/15/5/055104 CrossRefGoogle Scholar
  19. 19.
    Zhao Y, Hao Q, Ma Y, Lu M, Zhang B, Lapsley M, Khoo IC, Jun Huang T (2012) Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array. Appl Phys Lett 100(5):053119.  https://doi.org/10.1063/1.3681808 CrossRefGoogle Scholar
  20. 20.
    Shrekenhamer D, Chen W, Padilla W (2013) Liquid crystal tunable metamaterial absorber. Phys Rev Lett 110(17).  https://doi.org/10.1103/PhysRevLett.110.177403
  21. 21.
    Wang B, Wang L, Wang G, Huang W, Li X, Zhai X (2014) Frequency continuous tunable terahertz metamaterial absorber. J Lightwave Technol 32(6):1183–1189.  https://doi.org/10.1109/JLT.2014.2300094 CrossRefGoogle Scholar
  22. 22.
    Liu X, Tyler T, Starr T, Starr A, Jokerst N, Padilla W (2011) Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 107(4).  https://doi.org/10.1103/PhysRevLett.107.045901
  23. 23.
    Wang B, Wang G, Zhai X, Wang L (2015) Polarization tunable terahertz metamaterial absorber. IEEE Photonics J 7(4):1–7Google Scholar
  24. 24.
    Meng H, Wang L, Zhai X, Liu G, Xia S (2017) A simple design of a multi-band terahertz metamaterial absorber based on periodic square metallic layer with T-shaped gap. Plasmonics.  https://doi.org/10.1007/s11468-017-0509-1 CrossRefGoogle Scholar
  25. 25.
    Wang B, Wang G (2017) New type design of the triple-band and five-band metamaterial absorbers at terahertz frequency. Plasmonics.  https://doi.org/10.1007/s11468-016-0491-z CrossRefGoogle Scholar
  26. 26.
    Huang L, Chowdhury D, Ramani S, Reiten M, Luo S, Azad A et al (2012) Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers. Appl Phys Lett 101(10):101102.  https://doi.org/10.1063/1.4749823 CrossRefGoogle Scholar
  27. 27.
    Chaurasiya D, Ghosh S, Bhattacharyya S, Srivastava K (2015) An ultrathin quad-band polarization-insensitive wide-angle metamaterial absorber. Microw Opt Technol Lett 57(3):697–702.  https://doi.org/10.1002/mop.28928 CrossRefGoogle Scholar
  28. 28.
    Lee Y, Chen H, Xu Q, Wang J (2011) Refractive index sensitivities of noble metal nanocrystals: the effects of multipolar plasmon resonances and the metal type. J Phys Chem C 115(16):7997–8004.  https://doi.org/10.1021/jp202574r CrossRefGoogle Scholar
  29. 29.
    Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis C, Economou E (2007) Left-handed metamaterials: the fishnet structure and its variations. Phys Rev B 75(23).  https://doi.org/10.1103/PhysRevB.75.235114
  30. 30.
    Yu X, Shi L, Han D, Zi J, Braun P (2010) High quality factor metallodielectric hybrid plasmonic-photonic crystals. Adv Funct Mater 20(12):1910–1916.  https://doi.org/10.1002/adfm.201000135 CrossRefGoogle Scholar
  31. 31.
    Yuan H, Zhu B, Feng Y (2015) A frequency and bandwidth tunable metamaterial absorber in x-band. J Appl Phys 117(17):173103.  https://doi.org/10.1063/1.4919753 CrossRefGoogle Scholar
  32. 32.
    Zhong J, Huang Y, Wen G, Sun H, Wang P, Gordon O (2012) Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs. Appl Phys A 108(2):329–335.  https://doi.org/10.1007/s00339-012-6989-0 CrossRefGoogle Scholar
  33. 33.
    Fu Y, Liu A, Zhu W, Zhang X, Tsai D, Zhang J et al (2011) A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators. Adv Funct Mater 21(18):3589–3594.  https://doi.org/10.1002/adfm.201101087 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Saikat Chandra Bakshi
    • 1
  • Debasis Mitra
    • 1
  • Laxmikant Minz
    • 2
  1. 1.Department of Electronics & Telecommunication EngineeringIndian Institute of Engineering Science and Technology, ShibpurHowrahIndia
  2. 2.Department of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea

Personalised recommendations