Advertisement

Plasmonics

, Volume 13, Issue 6, pp 1833–1841 | Cite as

Simulation Studies of Photoacoustic Response from Gold-Silica Core-Shell Nanoparticles

  • Deepak Kumar
  • Devinder Pal Ghai
  • R. K. Soni
Article
  • 224 Downloads

Abstract

Metal nanoparticles especially of noble metals are used as an exogenous contrast agent for biomedical photoacoustic (PA) imaging in the tissue transmission window extending from visible to near infrared 700–1100 nm band. Different geometrical configurations of gold and silver nanoparticles like spherical core-shell, nanorod, and nanocages are promising candidates for thermoplasmonics, photothermal therapy, photothermal imaging, and photoacoustic imaging. In the current study, we simulated the photoacoustic response of gold and silica core-shell nanoparticle in water medium. Finite element simulations were carried out to study the spectral absorption response and effect of nanosecond laser pulse excitation on the spatial/temporal temperature as well as photoacoustic pressure variations of different core-shell geometry of nanoparticle. We have optimized the dimensions of gold nanosphere, gold-silica, and silica-gold core-shell geometries for optimum photoacoustic conversion efficiency. Further, the effect of shell thickness on the pulse photoacoustic signals for core-shell gold-silica and silica-gold nanoparticle has been studied. We concluded that silica-gold core-shell nanoparticles possess better photoacoustic conversion efficiency in comparison to gold nanosphere and gold-silica core-shell geometries. The prime aim of this study is to design efficient nano-probes for photoacoustic imaging, photoacoustic tomography, photothermal therapy, and drug delivery.

Keywords

Photoacoustic Core-shell Gold nanoparticles Localized surface plasmon resonance (LSPR) 

References

  1. 1.
    Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35(3):209–217.  https://doi.org/10.1039/B514191E CrossRefPubMedGoogle Scholar
  2. 2.
    Tian C, Qian W, Shao X, Xie Z, Xu C, Liu S, Cheng Q, Liu B, Wang X (2016) Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells. Adv Sci 3(12):1600237.  https://doi.org/10.1002/advs.201600237 CrossRefGoogle Scholar
  3. 3.
    Mallidi S, Larson T, Tam J, Joshi PP, Karpiouk A, Sokolov K, Emelianov S (2009) Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett 9(8):2825–2831.  https://doi.org/10.1021/nl802929u CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Qina Z, Bischof JC (2012) Thermophysical and biological responses of gold nanoparticle laser heating. Chem Soc Rev 41(3):1191–1217.  https://doi.org/10.1039/C1CS15184C CrossRefGoogle Scholar
  5. 5.
    Oraevsky AA, Karabutov AA, Savateeva EV (2001) Enhancement of optoacoustic tissue contrast with absorbing nanoparticles. Proc SPIE 4434:60–69CrossRefGoogle Scholar
  6. 6.
    Agarwal A, Huang SW, O'Donnell M, Day KC, Day M, Kotov N, Ashkenazi S (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 102(6):064701.  https://doi.org/10.1063/1.2777127 CrossRefGoogle Scholar
  7. 7.
    Bayer CL, Chen Y-S, Kim S, Mallidi S, Sokolov K, Emelianov S (2011) Multiplex photoacoustic molecular imaging using targeted silica-coated gold nanorods. Biomed Opt Express 2(7):1828–1835.  https://doi.org/10.1364/BOE.2.001828 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Liu K, Xue X, Furlani EP (2016) Theoretical comparison of optical properties of near-infrared colloidal plasmonic nanoparticles. Nat Sci Rep 6(1):34189.  https://doi.org/10.1038/srep34189 CrossRefGoogle Scholar
  9. 9.
    Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668CrossRefPubMedGoogle Scholar
  10. 10.
    Shi Y, Yang S, Xing D (2017) Quantifying the Plasmonic nanoparticle size effect on photoacoustic conversion efficiency. J Phys Chem C 121(10):5805–5811.  https://doi.org/10.1021/acs.jpcc.6b12498 CrossRefGoogle Scholar
  11. 11.
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248.  https://doi.org/10.1021/jp057170o CrossRefGoogle Scholar
  12. 12.
    Chen Y-S, Frey W, Aglyamov S, Emelianov S (2012) Environment-dependent generation of photoacoustic waves from Plasmonic nanoparticles. Small 8(1):47–52.  https://doi.org/10.1002/smll.201101140 CrossRefPubMedGoogle Scholar
  13. 13.
    Weber V, Feis A, Gellini C, Pilot R, Salvib PR, Signorini R (2015) Far- and near-field properties of gold nanoshells studied by photoacoustic and surface-enhanced Raman spectroscopies. Phys Chem Chem Phys 17(33):21190–21197.  https://doi.org/10.1039/C4CP05054A CrossRefPubMedGoogle Scholar
  14. 14.
    Wang Y, Xie X, Wang X, Ku G, Gill KL, O’Neal DP, Stoica G, Wang LV (2004) Photoacoustic tomography of a Nanoshell contrast agent in the in vivo rat brain. Nano Lett 4(9):1689–1692.  https://doi.org/10.1021/nl049126a CrossRefGoogle Scholar
  15. 15.
    Wu D, Lin H, Jiang MS, Jiang H (2014) Contrast agents for photoacoustic and Thermoacoustic imaging: a review. Int J Mol Sci 15(12):23616–23639.  https://doi.org/10.3390/ijms151223616 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Xiang L, Xing D, Gu H, Yang D, Zeng L, Yang S (2006) Gold nanoshell-based photoacoustic imaging application in biomedicine. Proceedings of the IEEE international symposium on biophotonics, Nanophotonics and Metamaterials 76–79Google Scholar
  17. 17.
    Sathiyamoorthy K, Strohm EM, Kolios MC (2016) Photoacoustic investigation of gold nanoshells for bioimaging applications. Proc. SPIE 9724, Plasmonics in Biology and Medicine XIII: 97240Google Scholar
  18. 18.
    Nguyen SC, Zhang Q, Manthiram K, Ye X, Lomont JP, Harris CB, Weller H, Paul Alivisatos A (2016) Study of heat transfer dynamics from gold Nanorods to the environment via time-resolved infrared spectroscopy. ACS Nano 10(2):2144–2151.  https://doi.org/10.1021/acsnano.5b06623 CrossRefPubMedGoogle Scholar
  19. 19.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B6:4370CrossRefGoogle Scholar
  20. 20.
    Baffou G, Quidant R (2013) Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev 7(2):171–187.  https://doi.org/10.1002/lpor.201200003 CrossRefGoogle Scholar
  21. 21.
    Pang GA, Laufer J, Niessner R, Haisch C (2016) Photoacoustic signal generation in gold Nanospheres in aqueous solution: signal generation enhancement and particle diameter effects. J Phys Chem C 120(48):27646–27656.  https://doi.org/10.1021/acs.jpcc.6b09374 CrossRefGoogle Scholar
  22. 22.
    Hatef A, Darvish B, Dagallier A, Davletshin YR, William J, Carl Kumaradas J, Rioux D, Meunier M (2015) Analysis of photoacoustic response from gold–silver alloy nanoparticles irradiated by short pulsed laser in water. J Phys Chem C 119(42):24075–24080.  https://doi.org/10.1021/acs.jpcc.5b08359 CrossRefGoogle Scholar
  23. 23.
    Cardellini A, Fasano M, BozorgBigdeli M, Chiavazzo E, Asinari P (2016) Thermal transport phenomena in nanoparticle suspensions. J Phys Condens Matter 28(48):483003.  https://doi.org/10.1088/0953-8984/28/48/483003 CrossRefPubMedGoogle Scholar
  24. 24.
    Chen Y-S, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S (2011) Silica-coated gold Nanorods as photoacoustic signal Nanoamplifiers. Nano Lett 11(2):348–354.  https://doi.org/10.1021/nl1042006 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the Plasmon response of complex nanostructures. Science 302(5644):419–422.  https://doi.org/10.1126/science.1089171 CrossRefPubMedGoogle Scholar
  26. 26.
    Navas MP, Soni RK (2015) Laser-generated bimetallic ag-au and ag-cu Core-Shell nanoparticles for refractive index sensing. Plasmonics 10(3):681–690.  https://doi.org/10.1007/s11468-014-9854-5 CrossRefGoogle Scholar
  27. 27.
    Katyal J, Soni RK (2014) Localized surface Plasmon resonance and refractive index sensitivity of metal–dielectric–metal multilayered nanostructures. Plasmonics 9(5):1171–1181.  https://doi.org/10.1007/s11468-014-9728-x CrossRefGoogle Scholar
  28. 28.
    Prodan E, Nordlander P (2004) Plasmon hybridization in spherical nanoparticles. J Chem Phys 120(11):5444–5454.  https://doi.org/10.1063/1.1647518 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Deepak Kumar
    • 1
    • 2
  • Devinder Pal Ghai
    • 1
  • R. K. Soni
    • 2
  1. 1.Laser Science and Technology Centre, DRDODelhiIndia
  2. 2.Department of PhysicsIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations