Advertisement

Plasmonics

, Volume 13, Issue 5, pp 1817–1831 | Cite as

New Characterization of Plasmons in Nanowire Dimers by Optical Forces and Torques

  • R. M. Abraham Ekeroth
Article

Abstract

In a previous work, unexpected optical torques were found on metallic dimers of infinite nanowires. The dimers were illuminated with linearly polarized plane waves. Here, the study is extended to bigger systems: the spin torques are induced independently of scale, shape details, and dielectric corrections. New properties appear in the dynamics as the breaking of the action-reaction law, changes in the radiation pressures, or the detection of forbidden modes—dark plasmons—by optical forces. Furthermore, the spectra of spin torques show more resolved resonances than typical far-field spectra. The numerical study is based on an exact method. New possibilities are suggested for the detection of asymmetries in nanostructures. The results are thought for the design of nanorotators and nanodetectors, or simply approach the movement of coupled particles with more accuracy.

Keywords

Plasmonics Optical forces Optical torques Nanowire dimers Spin torques 

Notes

Acknowledgments

The author would like to thank Marcelo Lester for sharing interesting discussions on the topic.

References

  1. 1.
    Poynting JH (1884) Phil Trans R Soc Lond 175:343–361CrossRefGoogle Scholar
  2. 2.
    Ashkin A (1970) Phys Rev Lett 24:156–159CrossRefGoogle Scholar
  3. 3.
    Andrews DL (2015) Photonics Volume 3: Photonics Technology and Instrumentation. Wiley, HobokenGoogle Scholar
  4. 4.
    Rahimzadegan A, Alaee R, Fernandez-Corbaton I, Rockstuhl C (2017) Phys Rev B 95(035106):1–5Google Scholar
  5. 5.
    Raziman TV, Wolke RJ, Martin OJF (2015) Faraday Discuss 178:421CrossRefGoogle Scholar
  6. 6.
    Svoboda K, Block SM (1994) Annu Rev Bioph Biom 23:247–285CrossRefGoogle Scholar
  7. 7.
    Ashkin A, Dziedzic JM (1987) Science 235:1517CrossRefGoogle Scholar
  8. 8.
    Righini M, Ghenuche P, Cherukulappurath S, Myroshnychenko V, García de Abajo FJ, Quidant R (2009) Nano Lett 9(10):3387–3391CrossRefGoogle Scholar
  9. 9.
    Burns MM, Fournier JM, Golovchenko JA (1990) Science 249(4970):749–754CrossRefGoogle Scholar
  10. 10.
    Jonáŝ A, Zemanek P (2008) Electrophoresis 29:4813–4851CrossRefGoogle Scholar
  11. 11.
    Totero Gongora JS, Fratalocchi A (2016) Opt Lasers Eng 76:40–44CrossRefGoogle Scholar
  12. 12.
    Maragò OM, Jones PH, Gucciardi PG, Volpe G, Ferrari AC (2013) Nat Nanotech 8:807–819CrossRefGoogle Scholar
  13. 13.
    Sepulveda B, Alegret J, Käll Opt M (2007) Exp 15(22):14914–14920CrossRefGoogle Scholar
  14. 14.
    Gordon JP (1973) Phys Rev A 8(1):14–21CrossRefGoogle Scholar
  15. 15.
    Chaumet PC, Nieto-Vesperinas M (2000) Opt Lett 25(15):1065–1067CrossRefGoogle Scholar
  16. 16.
    Albaladejo S, Marqués MI, Laroche M, Sáenz JJ (2009) Phys Rev Lett 102:113602CrossRefGoogle Scholar
  17. 17.
    Andrews DL (2007) Structured light and its applications: an introduction to phase-structured beams and nanoscale optical forces. Elsevier, USAGoogle Scholar
  18. 18.
    Miljković VD, Pakizeh T, Sepulveda B, Johensson P, Käll M (2010) J Phys Chem C 114:7474–7479CrossRefGoogle Scholar
  19. 19.
    Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Nano Lett 4(5):899–903CrossRefGoogle Scholar
  20. 20.
    Jackson J (1999) Classical electrodynamics, 3rd edn. Wiley, USAGoogle Scholar
  21. 21.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, BathCrossRefGoogle Scholar
  22. 22.
    Chen L, Xu N, Singh L, Cui T, Singh R, Zhu Y, Zhang W (2017) Adv Opt Mat 5:1600960(7pp)Google Scholar
  23. 23.
    Chen L, Wei YM, Zang XF, Zhu YM, Zhuang SL (2016) Sci Rep 6:22027(11pp)Google Scholar
  24. 24.
    Abraham Ekeroth R M (2016) J Opt 18:085003(16pp)Google Scholar
  25. 25.
    Ding K, Chan CT (2017) arXiv:1707.06178[physics.optics]
  26. 26.
    Palik ED (1998) Handbook of optical constants of solids Vol I, II, III. Academic Press Elsevier, San DiegoGoogle Scholar
  27. 27.
    Dholakia K, Zemánek P (2010) Rev Mod Phys 82:1767–1791CrossRefGoogle Scholar
  28. 28.
    Sukhov S, Shalin A, Haefner D, Dogariu A (2015) Opt Exp 23(1):247–252CrossRefGoogle Scholar
  29. 29.
    Albaladejo S, Marqués MI, Sáenz JJ (2011) Opt Exp 19(12):11471–11478CrossRefGoogle Scholar
  30. 30.
    Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University PressGoogle Scholar
  31. 31.
    Ji A, Raziman TV, Butet J, Sharma RP, Martin OJF (2014) Opt Let 39(16):4699–4701CrossRefGoogle Scholar
  32. 32.
    Madrazo A, Nieto-Vesperinas M (1995) J Opt Soc Am A 12:1298CrossRefGoogle Scholar
  33. 33.
    Abraham Ekeroth RM, Lester M F (2015) J Opt 17:105002CrossRefGoogle Scholar
  34. 34.
    Van de Hulst H (1981) Light scattering by small particles. Dover Publications Inc., New YorkGoogle Scholar
  35. 35.
    Stratton JA (1941) Electromagnetic theory. McGraw-HillGoogle Scholar
  36. 36.
    Lester M, Skigin D (2011) J Opt 13(035105):1–8Google Scholar
  37. 37.
    Quidant R, Baffou G, García de Abajo FJ (2010) ACS Nano 4(2):709–716CrossRefGoogle Scholar
  38. 38.
    Kremer E, Barchiesi D, Grosges T, Lamy de la Chapelle M (2011) Piers Online 7(5):406–410Google Scholar
  39. 39.
    Lamothe E, Lévêque G, Martin OJF (2007) Opt Exp 15(15):9631–9644CrossRefGoogle Scholar
  40. 40.
    Kottmann JP, Martin OJF (2001) Opt Exp 8(12):655–663CrossRefGoogle Scholar
  41. 41.
    Johnson PB, Christy RW (1972) Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  42. 42.
    Moreno F, Albella P, Nieto-Vesperinas M (2013) Langmuir 29:6715–6721CrossRefGoogle Scholar
  43. 43.
    Goldstein H, Poole C, Safko J (2001) Classical mechanics, 3rd edn. Addison-Wesley, New YorkGoogle Scholar
  44. 44.
    Pinheiro MJ (2011) Phys Scr 84:055004(11pp)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Grupo de Plasmas Densos, Instituto de Física Arroyo SecoUniversidad Nacional del Centro de la Provincia de Buenos AiresTandilArgentina

Personalised recommendations