Advertisement

Plasmonics

, Volume 13, Issue 5, pp 1811–1816 | Cite as

Nanoantenna-Enhanced Radiative and Anisotropic Decay Rates in Monolayer-Quantum Dots

  • Laxmi Narayan Tripathi
  • M. Praveena
  • Ben Johns
  • Jaydeep Kumar Basu
Article

Abstract

Nanoantenna-enhanced ultrafast emission from colloidal quantum dots as quantum emitters is required for fast quantum communications. On-chip integration of such devices requires a scalable and high-throughput technology. We report self-assembly lithography technique of preparing hybrid of gold nanorods antenna over a compact CdSe quantum dot monolayer. We demonstrate resonant and nonresonant gold nanorod antenna-enhanced radiative and anisotropic decay. Extensive simulations explain the mechanism of the decay rates and the role of antenna in both random and compact monolayers of quantum dots. The study could find applications in quantum dot display and quantum communication devices.

Keywords

Nanoantena Quantum dots Plasmonics 

Notes

Acknowledgment

We acknowledge the Department of Science and Technology (Nanomission), India, for the financial support and Advanced Facility for Microscopy and Microanalysis, Indian Institute of Science, Bangalore, for access to TEM measurements. M. Praveena acknowledges UGC, India, for the financial support.

References

  1. 1.
    Hoang TB, Akselrod GM, Mikkelsen MH (2016) Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett 16:270CrossRefGoogle Scholar
  2. 2.
    Giannini V, Fernandez-Dominguez AI, Heck SC, Maier SA (2011) Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev 111:3888CrossRefGoogle Scholar
  3. 3.
    Novotny L, van Hulst N (2011) Antennas for light. Nat Photonics 5:83CrossRefGoogle Scholar
  4. 4.
    Eggleston MS, Messer K, Zhang L, Yablonovitch E, Wu MC (2015) Optical antenna enhanced spontaneous emission. Proc Natl Acad Sci USA 112:1704CrossRefGoogle Scholar
  5. 5.
    Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. 6.
    Bharadwaj P, Deutsch B, Novotny L (2009) Optical antennas. Advances in Optics and Photonics 1:438CrossRefGoogle Scholar
  7. 7.
    Neogi A, Morkoç H, Kuroda T, Tackeuchi A (2005) Coupling of spontaneous emission from GaN–AlN quantum dots into silver surface plasmons. Opt Lett 30:93CrossRefGoogle Scholar
  8. 8.
    Haridas M, Basu JK, Gosztola DJ, Wiederrecht GP (2010) Photoluminescence spectroscopy and lifetime measurements from self-assembled semiconductor-metal nanoparticle hybrid arrays. Appl Phys Lett 97:83307CrossRefGoogle Scholar
  9. 9.
    Russell KJ, Liu T-L, Cui S, Hu EL (2012) Large spontaneous emission enhancement in plasmonic nanocavities. Nat Photonics 6:459CrossRefGoogle Scholar
  10. 10.
    Tripathi LN, Praveena M, Basu JK (2013) Plasmonic tuning of photoluminescence from semiconducting quantum dot assemblies. Plasmonics 8:657CrossRefGoogle Scholar
  11. 11.
    Haridas M, Tripathi LN, Basu JK (2011) Photoluminescence enhancement and quenching in metal-semiconductor quantum dot hybrid arrays. Appl Phys Lett 98:063305CrossRefGoogle Scholar
  12. 12.
    Tripathi LN, Praveena M, Valson P, Basu JK (2014) Long range emission enhancement and anisotropy in coupled quantum dots induced by aligned gold nanoantenna. Appl Phys Lett 105:163106CrossRefGoogle Scholar
  13. 13.
    Peng ZA, Peng XG (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183CrossRefGoogle Scholar
  14. 14.
    Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414CrossRefGoogle Scholar
  15. 15.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, BerlinCrossRefGoogle Scholar
  16. 16.
    Johnson PB, Christy RW (1972) Optical constants of noble metals. Phys Rev B 6:4370CrossRefGoogle Scholar
  17. 17.
    Chandrasekhar S (1943) Stochastic problems in physics and astronomy. Rev Mod Phys 15:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Julius Maximilians UniversitatWuerzburgGermany
  2. 2.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations