Advertisement

Plasmonics

, Volume 13, Issue 5, pp 1795–1802 | Cite as

Optical and Photocatalytic Measurements of Co-TiO2 Nanoparticle Thin Films

  • Mai M. Khalaf
  • Hany M. Abd El-Lateef
  • H. M. Ali
Article
  • 108 Downloads

Abstract

Co-TiO2 nanoparticle thin films were synthesized by sol-gel method. The structural properties of the synthesized sample were studied using FTIR, XRD, and TEM. XRD confirmed the presence of double-phase anatase/rutile for the TiO2 nanoparticles. Effect of annealing temperature and exposure to microwave energy on the optical properties were studied for transparent conductive oxide (TCO) application. The optical energy gap and refractive index were determined. It was found that microwave treatment is an effective method for reinforcing optical properties of films. The photocatalytic properties were studied by determining the absorbance of methylene blue (MB) using UV source as a function of illumination time.

Keywords

Sol-gel method Optical materials Thin films Nanostructures Photocatalytic measurements 

References

  1. 1.
    Ali HM, Abou-Mesalam MM, El-Shorbagy MM (2010) Structure and optical properties of chemically synthesized titanium oxide deposited by evaporation technique. J Phys Chem Solids 71(1):51–55.  https://doi.org/10.1016/j.jpcs.2009.10.008 CrossRefGoogle Scholar
  2. 2.
    Grabowska E, Zaleska A, Sobczak JW, Gazda M, Hupka J (2009) Boron-doped TiO2: characteristics and photoactivity under visible light. Procedia Chem 1(2):1553–1559.  https://doi.org/10.1016/j.proche.2009.11.003 CrossRefGoogle Scholar
  3. 3.
    Yonemochi S, Sugiyama A, Kawamura K, Nagoya T, Aogaki R (2004) Fabrication of TiO2 composite materials for air purification by magnetic field effect and electrocodeposition. J Appl Electrochem 34(12):1279–1285.  https://doi.org/10.1007/s10800-004-1762-5 CrossRefGoogle Scholar
  4. 4.
    Fujihara K, Ohno T, Matsumura M (1998) Splitting of water by electrochemical combination of twophotocatalytic reactions on TiO2 particles. J Chem Soc 94:3705–3709.  https://doi.org/10.1039/A806398B CrossRefGoogle Scholar
  5. 5.
    Tian WC, Ho YH, Chen CH, Kuo CY (2013) Sensing performance of precisely ordered TiO2 nanowire gas sensors fabricated by electron-beam lithography. Sensors 13(1):865–874.  https://doi.org/10.3390/s130100865 CrossRefPubMedGoogle Scholar
  6. 6.
    Assim EM (2008) Optical constants of titanium monoxide TiO thin films. J Alloy Compd 465(1-2):1–7.  https://doi.org/10.1016/j.jallcom.2007.10.059 CrossRefGoogle Scholar
  7. 7.
    Szpakolski K, Latham K, Rix C, Rani RA, Kourosh (2013) Silane: a new linker for chromophores in dyesensitised solar cells. Polyhedron 52:719–732.  https://doi.org/10.1016/j.poly.2012.07.078 CrossRefGoogle Scholar
  8. 8.
    Ali HM, Mohamed HA, Mohamed SH (2005) Enhancement of the optical and electrical properties of ITO thin films deposited by electron beam evaporation technique. Eur Phys J Appl Phys 31(2):87–93.  https://doi.org/10.1051/epjap:2005044 CrossRefGoogle Scholar
  9. 9.
    Ubonchonlakate K, Sikong L, Saito F (2012) Photocatalytic disinfection of P. aeruginosa bacterial Ag-doped TiO2 film. Procedia Eng 32:656–662.  https://doi.org/10.1016/j.proeng.2012.01.1323 CrossRefGoogle Scholar
  10. 10.
    Karunakaran C, Vinayagamoorthy P, Jayabharathi J (2013) Electrical, optical and photocatalytic properties of polyethylene glycol-assisted sol–gel synthesized Mn-doped TiO2/ZnO core–shell nanoparticles. Superlattice Microst 64:569–580.  https://doi.org/10.1016/j.spmi.2013.10.021 CrossRefGoogle Scholar
  11. 11.
    Kobwittaya K, Sirivithayapakorn S (2014) Photocatalytic reduction of nitrate over TiO2 and Ag-modified TiO2. J Saudi Chem Soc 18(4):291–298.  https://doi.org/10.1016/j.jscs.2014.02.001 CrossRefGoogle Scholar
  12. 12.
    Munusamy S, Aparna RS, Prasad RG (2013) Photocatalytic effect of TiO2 and the effect of dopants on degradation of brilliant green. Sustain Chem Process 1(1):4.  https://doi.org/10.1186/2043-7129-1-4 CrossRefGoogle Scholar
  13. 13.
    Zuo Z, Huang W, Han P, Li Z (2009) Theoretical and experimental investigation of the influence of Co content on the titanium dioxide phase transition. Solid State Commun 149(47–48):2139–2142.  https://doi.org/10.1016/j.ssc.2009.09.027 CrossRefGoogle Scholar
  14. 14.
    Cabrera RQ, Vazquez CS, Darr JA, Parkin IP (2014) Critical influence of surface nitrogen species on the activity of N-doped TiO2 thin-films during photodegradation of stearic acid under UV light irradiation. Appl Catal B-Environ 160:582–588.  https://doi.org/10.1016/j.apcatb.2014.06.010 CrossRefGoogle Scholar
  15. 15.
    Khairy M, Zakaria W (2014) Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes. Egypt J Pet 23(4):419–426.  https://doi.org/10.1016/j.ejpe.2014.09.010 CrossRefGoogle Scholar
  16. 16.
    Bouzaida I, Ferronato C, Chovelon JM, Rammah ME, Herrmann JM (2004) Heterogeneous photocatalytic degradation of the anthraquinonic dye, Acid Blue 25 (AB25): a kinetic approach. J Photochem Photobiol A Chem 168(1-2):23–30.  https://doi.org/10.1016/j.jphotochem.2004.05.008 CrossRefGoogle Scholar
  17. 17.
    Asahi R, Taga Y, Mannstadt W, Freeman AJ (2000) Electronic and optical properties of anatase TiO2. Phys Rev B Condens Matter 61:7459–7465.  https://doi.org/10.1103/PhysRevB.61.7459 CrossRefGoogle Scholar
  18. 18.
    Amtout A, Leonelli R (1995) Optical properties of rutile near its fundamental band gap. Phys Rev B Condens Matter 51:6842–6851.  https://doi.org/10.1103/PhysRevB.51.6842 CrossRefGoogle Scholar
  19. 19.
    Koelsch M, Cassaignon S, Thanh Minh CT, Guillemoles J-F, Jolivet J-P (2004) Electrochemical comparative study of titania (anatase, brookite and rutile) nanoparticles synthesized in aqueous medium. Thin Solid Films 451:86–92.  https://doi.org/10.1016/j.tsf.2003.11.150 CrossRefGoogle Scholar
  20. 20.
    Zribi M, Kanzari M, Rezig B (2008) Structural, morphological and optical properties of thermal annealed TiO thin films. Thin Solid Films 516(7):1476–1479.  https://doi.org/10.1016/j.tsf.2007.07.195 CrossRefGoogle Scholar
  21. 21.
    Mohamed SH, Shaaban ER (2011) Microstructural, optical and photocatalytic properties of CdS doped TiO2 thin films. Physica B 406(22):4327–4331.  https://doi.org/10.1016/j.physb.2011.08.084 CrossRefGoogle Scholar
  22. 22.
    Balasubramanian A, Radahakrishnan M, Balasubramanian C (1982) Electrical properties of electron-beam-evaporated indium oxide thin films. Thin Solid Films 91(1):71–79.  https://doi.org/10.1016/0040-6090(82)90125-0 CrossRefGoogle Scholar
  23. 23.
    Liu Z, Zhang X, Nishimoto S, Jin M, Tryk DA, Murakami T, Fujishima A (2007) Anatase TiO2 nanoparticles on rutile TiO2 nanorods: a heterogeneous nanostructure via layer-by-layer assembly. Langmuir 23(22):10916–10919.  https://doi.org/10.1021/la7018023 CrossRefPubMedGoogle Scholar
  24. 24.
    Cullity BD (1979) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Reading, p 102Google Scholar
  25. 25.
    Nakamoto K (1978) Infrared and Raman spectra of inorganic and coordination compound. John Wiley and Sons, New YorkGoogle Scholar
  26. 26.
    Nyquist RN, Kagel RO (1997) Infrared and Raman spectra of inorganic compounds and organic salts. Academic Press, New YorkGoogle Scholar
  27. 27.
    Zou H, Lin YS (2004) Structural and surface chemical properties of sol–gel derived TiO2–ZrO2 oxides. Appl Catal A Gen 265(1):35–42.  https://doi.org/10.1016/j.apcata.2004.01.015 CrossRefGoogle Scholar
  28. 28.
    Fu X, Clark LA, Yang Q, Anderson MA (1996) Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environ Sci Technol 30(2):647–653.  https://doi.org/10.1021/es950391v CrossRefGoogle Scholar
  29. 29.
    Klug HP, Alexander LE (1970) X-ray diffraction procedures. Wiley, New YorkGoogle Scholar
  30. 30.
    Neumann H, Horig W, Reccius E, Sobotta H, Schumann B, Kuhn G (1979) Growth and optical properties of CuGaTe2 thin films. Thin Solid Films 61(1):13–22.  https://doi.org/10.1016/0040-6090(79)90494-2 CrossRefGoogle Scholar
  31. 31.
    Assim EM (2008) Optical constants of TiO1.7 thin films deposited by electron beam gun. J Alloy Compd 463(1-2):55–61.  https://doi.org/10.1016/j.jallcom.2007.09.034 CrossRefGoogle Scholar
  32. 32.
    Xue SW, Zu XT, Zhou WL, Deng HX, Xiang X, Zhang L, Deng H (2008) Effects of post-thermal annealing on the optical constants of ZnO thin film. J Alloy Compd 448(1-2):21–26.  https://doi.org/10.1016/j.jallcom.2006.10.076 CrossRefGoogle Scholar
  33. 33.
    Sun J, Gerberich WW, Francis LF (2007) Transparent, conductive polymer blend coatings from latex-based dispersions. Prog Org Coat 59(2):115–121.  https://doi.org/10.1016/j.porgcoat.2007.01.019 CrossRefGoogle Scholar
  34. 34.
    Murakami SY, Kominami H, Kera Y, Ikeda S, Noguchi H, Uosaki K, Ohtani B (2007) Evaluation of electron-hole recombination properties of titanium (IV) oxide particles with high photocatalytic activity. Res Chem Intermed 33(3-5):285–296.  https://doi.org/10.1163/156856707779238612 CrossRefGoogle Scholar
  35. 35.
    Ou C-C, Yang C-S, Lin S-H (2011) Selective photo-degradation of Rhodamine B over zirconia incorporated titania nanoparticles: a quantitative approach. Cat Sci Technol 1(2):295.  https://doi.org/10.1039/c0cy00019a CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mai M. Khalaf
    • 1
    • 2
  • Hany M. Abd El-Lateef
    • 1
    • 2
  • H. M. Ali
    • 3
  1. 1.Department of Chemistry, College of ScienceKing Faisal UniversityAl HufufSaudi Arabia
  2. 2.Chemistry Department, Faculty of ScienceSohag UniversitySohagEgypt
  3. 3.Physics Department, Faculty of ScienceSohag UniversitySohagEgypt

Personalised recommendations