pp 1–10 | Cite as

Multispectral Switching Using Fano Resonance and Plasmon-Induced Transparency in a Plasmonic Waveguide-Coupled Resonator System

  • Sushmita Paul
  • Mina RayEmail author


Quantum interference effects, namely Fano resonance producing asymmetric resonant excitation and plasmon-induced transparency (PIT), are demonstrated in a plasmonic waveguide-coupled resonator device incorporated with a third-order Kerr nonlinear medium. Occurrence of both Fano and induced transparency peaks is modulated by alteration of the nonlinear permittivity through an external control beam and the phenomenon is further utilized to investigate optical switching in the plasmonic device. Simultaneous switching at multiple wavelengths is explored using Fano and PIT effect and the multispectral optical switching at four or more wavelengths is employed for proposed realization of trinary logic operations.


Plasmonics Fano resonance MDM waveguide Nonlinear switching 


Funding Information

The author S. Paul acknowledges Department of Science and Technology (DST), Government of India for providing research grant.


  1. 1.
    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91CrossRefGoogle Scholar
  2. 2.
    Ebbesen TW, Genet C, Bozhevolnyi SI (2008) Surface plasmon circuitry. Phys Today 61:44–50CrossRefGoogle Scholar
  3. 3.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511CrossRefGoogle Scholar
  4. 4.
    Barnes W, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  5. 5.
    Zhang J, Zhang L, Xu W (2012) Surface plasmon polaritons: physics and applications. J Phys D Appl Phys 45:113001CrossRefGoogle Scholar
  6. 6.
    Hayashi S, Okamoto T (2012) Plasmonics: visit the past to know the future. J Phys D Appl Phys 45:433001CrossRefGoogle Scholar
  7. 7.
    Stockman MI (2011) Nanoplasmonics: past, present, and glimpse into future. Opt Express 17:22029–22106CrossRefGoogle Scholar
  8. 8.
    Lin X, Huang X (2009) Numerical modelling of a teeth shaped nanoplasmonic waveguide filter. J Opt Soc Am B 26:1263–1268CrossRefGoogle Scholar
  9. 9.
    Yang S, Chen W, Nelson R, Zhan (2009) Miniature circular polarization analyser with spiral plasmonic lens. Opt. Lett 34:3047–3049CrossRefGoogle Scholar
  10. 10.
    Martino GD, Sonnefraud Y, Tame MS, Kena-Cohen S, Dieleman F, Ozdemir SK, Kim MS, Maier SA (2014) Observation of quantum interference in the plasmonic Hong-Ou-Mandel effect. Phys Rev Applied 1:034004CrossRefGoogle Scholar
  11. 11.
    Dionne JA, Diest K, Sweatlock LA, Atwater HA (2009) PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. Nano Lett 9:897–902CrossRefGoogle Scholar
  12. 12.
    Min C, Wang P, Chen C, Deng Y, Lu Y, Ming H, Ning T, Zhou Y, Gang G (2008) All optical switching in subwavelength metallic grating structure containing non-linear optical materials. Opt Lett 33:869–871CrossRefGoogle Scholar
  13. 13.
    Leon ID, Berini P (2010) Amplification of long range surface plasmons by a dipolar gain medium. Nat Photonics 4:382–387CrossRefGoogle Scholar
  14. 14.
    Noginov MA, Zhu G, Mayy M, Ritzo BA, Noginova N, Podolskiy VA (2008) Stimulated emission of surface plasmon polaritons. Phys Rev Lett 101:226806CrossRefGoogle Scholar
  15. 15.
    Paul S, Ray M (2016) Analysis of plasmonic subwavelength waveguide coupled nanostub and its application in optical switching. Appl Phys A Mater Sci Process 122:1–9CrossRefGoogle Scholar
  16. 16.
    Neutens PP, Dorpe V, Vlamink ID, Lagae L, Borghs G (2009) Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nat Photonics 3:283–286CrossRefGoogle Scholar
  17. 17.
    Pannipitiya A, Rukhlenko ID, Premaratne M, Hattori HT, Agarwal GP (2010) Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt Express 18:6191–6204CrossRefGoogle Scholar
  18. 18.
    Pannipitiya A, Rukhlenko ID, Premaratne M (2011) Analytical modeling of resonant cavities for plasmonic slot waveguide junctions. IEEE Photonics J 3:220–233CrossRefGoogle Scholar
  19. 19.
    Dionne JA, Sweatlock LA, Atwater HA, Polman A (2006) Plasmon slot waveguides: towards chip scale propagation with subwavelength-scale localization. Phys Rev B 73:035407CrossRefGoogle Scholar
  20. 20.
    Xiang Y, Zhang X, Cai W, Wang L, Ying C, Xu J (2013) Optical bistability based on Bragg grating resonators in metal-insulator-metal plasmonic waveguides. AIP Adv 3:012106CrossRefGoogle Scholar
  21. 21.
    Huang Y, Min C, Yang L, Veronis G (2012) Nanoscale plasmonic devices based on metal-dielectric-metal stub resonators. Int J Optoelectron 2012:372048Google Scholar
  22. 22.
    Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866–1187CrossRefGoogle Scholar
  23. 23.
    Paul S, Bera M, Ray M (2015) Parametric analysis of spectral Fano lineshape for plasmonic waveguide-coupled dual nanoresonator. J Lightwave Technol 33:2824–2830CrossRefGoogle Scholar
  24. 24.
    Miroshnichenko AE (2009) Nonlinear Fano-Feshbach resonances. Phys Rev E 79:026611–002661CrossRefGoogle Scholar
  25. 25.
    Miroshnichenko AE, Flach S, Kivshar (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82:2257–2298CrossRefGoogle Scholar
  26. 26.
    Francescato Y, Giannini V, Maier SA (2012) Plasmonic systems unveiled by Fano resonances. ACS Nano 6:1830–1838CrossRefGoogle Scholar
  27. 27.
    Lukyanchuk B, Zheludev NI, Maier SA, Halas NJ, Norlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715CrossRefGoogle Scholar
  28. 28.
    Giannini V, Francescato Y, Amrania H, Philips C, Maier SA (2011) Fano resonances in nanoscale plasmonic systems: a parameter-free modelling approach. Nano Lett 11:2835–2840CrossRefGoogle Scholar
  29. 29.
    Ogawa S, Takagawa Y, Kimata M (2016) Fano resonance in asymmetric-period two-dimensional plasmonic absorbers for dual–band uncooled infrared sensors. Opt Eng 55:117105 Errata: 2016 Opt. Eng. 55:119803CrossRefGoogle Scholar
  30. 30.
    Tejeira FL, Dominguez RP, Oliveros RR, Gil JS (2012) Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna. New J Phys 14:023035CrossRefGoogle Scholar
  31. 31.
    Chen Z, Hu R, Cui L, Yu L, Wang L, Xiao J (2014) Plasmonic waveguide demultiplexers based on tunable Fano resonance in coupled resonator systems. Opt Commun 320:6–11CrossRefGoogle Scholar
  32. 32.
    Piao X, Yu S, Koo S, Lee K, Park NK (2011) Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures. Opt Express 19:10907–10912CrossRefGoogle Scholar
  33. 33.
    Lu H, Liu X, Mao D, Wang G (2012) Plasmonic nanosensor based on Fano resonance in waveguide coupled resonators. Opt Lett 37:3780–3782CrossRefGoogle Scholar
  34. 34.
    Xiao YF, Li M, Liu YC, Li Y, Sun X, Gong Q (2010) Asymmetric Fano resonance in indirectly coupled microresonators. Phys Rev A 82:065804CrossRefGoogle Scholar
  35. 35.
    Piao X, Yu S, Park N (2012) Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Opt Express 20:18994–18999CrossRefGoogle Scholar
  36. 36.
    Boller KJ, Imamolu A, Harris SE (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66:2593–2596CrossRefGoogle Scholar
  37. 37.
    Boyd RW, Gauthier DJ (2006) Photonics: transparency on an optical chip. Nature 441:701–702CrossRefGoogle Scholar
  38. 38.
    Hayashi S, Nesterenko DV, Sekkat Z (2015) Fano resonance and Plasmon induced transparency in waveguide-coupled surface plasmon resonance sensors. Appl Phys Express 8:022201CrossRefGoogle Scholar
  39. 39.
    Lu H, Liu X, Wang G, Mao D (2012) Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Nanotechnology 23:444003CrossRefGoogle Scholar
  40. 40.
    Lu H, Liu X, Mao D, Gong Y, Wang G (2011) Induced transparency in nanoscale plasmonic resonator systems. Opt Lett 36:3233–3235CrossRefGoogle Scholar
  41. 41.
    Huang Y, Min C, Veronis G (2011) Subwavelength slow light waveguides based on a plasmonic analogue of electromagnetically induced transparency. Appl Phys Lett 99:143117CrossRefGoogle Scholar
  42. 42.
    Kekatpure RD, Barnard ES, Cai W, Brongersma ML (2010) Phase-coupled plasmon-induced transparency. Phys Rev Lett 104:243902CrossRefGoogle Scholar
  43. 43.
    Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photonics 6:737–748CrossRefGoogle Scholar
  44. 44.
    Pannipitiya A, Rukhlenko ID, Premaratne M (2011) Analytical theory of optical bistability in plasmonic nanoresonators. J Opt Soc Am B 28:2820–2826CrossRefGoogle Scholar
  45. 45.
    Paul S, Ray M (2017) Simultaneous switching at multiple wavelengths using plasmon induced transparency and Fano resonance. IEEE Photon Technol Lett 29:739–742CrossRefGoogle Scholar
  46. 46.
    Paul S, Ray M (2016) Plasmonic switching and bistability at telecom wavelength using the subwavelength nonlinear cavity coupled to a dielectric waveguide: a theoretical approach. J Appl Phys 120:203102CrossRefGoogle Scholar
  47. 47.
    Lu H, Liu X, Wang L, Gong Y, Mao D (2011) Ultrafast all optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt Express 19:2910–2915CrossRefGoogle Scholar
  48. 48.
    Min C, Veronis G (2009) Absorption switches in metal-dielectric-metal plasmonic waveguides. Opt Express 17:10757–10766CrossRefGoogle Scholar
  49. 49.
    Yu Z, Veronis G, Fan S (2008) Gain induced switching in metal-dielectric metal plasmonic waveguides. Appl Phys Lett 92:041117CrossRefGoogle Scholar
  50. 50.
    Lin XS, Yan JH, Zheng YB, Wu LJ, Lan S (2011) Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structures. Opt Express 19:9594–9599CrossRefGoogle Scholar
  51. 51.
    Homola J (1977) On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sensors Actuators 41:207–211CrossRefGoogle Scholar
  52. 52.
    Collin S, Pardo F, Pelouard JL (2007) Waveguiding in nanoscale metallic apertures. Opt Express 15:4310–4320CrossRefGoogle Scholar
  53. 53.
    Wang X, Jiang H, Chen J, Wang P, Lu Y, Ming H (2011) Optical bistability effect in plasmonic racetrack resonator with high extinction ratio. Opt Express 19:19415–19421CrossRefGoogle Scholar
  54. 54.
    Basuray A, Mukhopadhyay S, Ghosh HK, Datta AK (1991) A tristate optical logic system. Opt Commun 85:167–170CrossRefGoogle Scholar
  55. 55.
    Garai SK, Mukhopadhyay S (2011) A scheme of developing frequency encoded tristate logic operations exploiting nonlinear character of PPLN waveguide and RSOA. Optik 122:498–501CrossRefGoogle Scholar
  56. 56.
    Basuray A, Ray M, Ray B (1992) Optical implementation of trinary combitional logic incorporating Fredkin gates. Proc SPIE 1622:394–398CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied Optics and PhotonicsUniversity of CalcuttaKolkataIndia

Personalised recommendations