Advertisement

Plasmonics

pp 1–9 | Cite as

A Thin Phase Screen Model for Surface Plasmon Polaritons

  • M. G. WeberEmail author
  • A. A. Maradudin
Article
  • 14 Downloads

Abstract

We develop a thin phase screen model for the transmission of a surface plasmon polariton through a curved boundary between two different co-planar metal surfaces. The result is illustrated by applying it to the determination of the intensity distribution of the electric field of a surface plasmon polariton that has been transmitted through a quadratic (parabolic) boundary, through a cubic boundary, and through a periodic boundary.

Keywords

Surface plasmon polaritons (SPP) Thin phase screen model SPP focusing Accelerating SPP SPP Talbot effect 

Notes

References

  1. 1.
    Welford WT (1980) Laser speckle and surface roughness. Cont Phys 21:401–412CrossRefGoogle Scholar
  2. 2.
    Zu-Han G u, Escamilla HM, Méndez ER, Maradudin AA, Jun Q, Michel T, Nieto-Vesperinas M (1992) Interaction of two optical beams at a symmetric random surface. Appl Opt 31:5878–5889CrossRefGoogle Scholar
  3. 3.
    Méndez ER, Macías D (2007) Inverse problems in optical scattering. In: Maradudin AA (ed) Light scattering and nanoscale surface roughness. Springer, New York, pp 437–439Google Scholar
  4. 4.
    See, for example, Maradudin AA (2014) Introduction: plasmonics and its building blocks. In: Maradudin AA, Sambles JR, Barnes WL (eds) Modern plasmonics. Chapter 1, Eqs. (1.5) and (1.7b). Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B6:4370–4379CrossRefGoogle Scholar
  6. 6.
    Lighthill MJ (1958) Introduction to fourier analysis and generalised functions. Cambridge University Press, Cambridge. Section 5.4CrossRefGoogle Scholar
  7. 7.
    Yin L, Vlasko-Vlasov VK, Pearson J, Hiller JM, Hua J, Welp U, Brown DE, Kimball CW (2005) Subwavelength focusing and guiding of surface plasmons. Nano Lett 5:1399–1402CrossRefGoogle Scholar
  8. 8.
    Liu Z, Steele JM, Strituravanich W, Pikus Y, Sun C, Zhang X (2005) Focusing surface plasmons with a plasmonic lens. Nano Lett 5:1726–1729CrossRefGoogle Scholar
  9. 9.
    Feng L, Tetz KA, Slutsky B, Lomakin V, Fainman Y (2007) Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves. Appl Phys Lett 91:081101 (1–3)Google Scholar
  10. 10.
    Kim H, Lee B (2008) Diffractive slit patterns for focusing surface plasmon polaritons. Opt Express 16:8969–8980CrossRefGoogle Scholar
  11. 11.
    Abramowitz M, Stegun IA (eds) (1972) Handbook of mathematical functions, tenth printing. National Bureau of Standards, Washington, D.C. Section 10.4Google Scholar
  12. 12.
    Salandrino A, Christodoulidis DN (2010) Airy plasmon: a nondiffracting surface wave. Opt Lett 35:2082–2084CrossRefGoogle Scholar
  13. 13.
    Zhang P, Wang S, Liu Y, Yin X, Lu C, Chen Z, Zhang X (2011) Plasmonic Airy beams with dynamically controlled trajectories. Opt Lett 36:3191–3193CrossRefGoogle Scholar
  14. 14.
    Minovich A, Klein AE, Jaunts N, Pertsch T, Neshev DN, Kivshar YS (2011) Generation and near-field imaging of Airy surface plasmons. Phys Rev Lett 107:116802 (1–4)CrossRefGoogle Scholar
  15. 15.
    Li L, Li T, Wang SM, Zhang C, Zhu SN (2011) Plasmonic Airy beam generated by in-plane diffraction. Phys Rev Lett 107:126804 (1–4)Google Scholar
  16. 16.
    Talbot HF (1836) Facts relating to optical science, no. IV. Phil Mag 9:401–407Google Scholar
  17. 17.
    Rayleigh Lord (1881) On copying diffraction-gratings, and on some phenomena connected therewith. Phil Mag 11:196–205CrossRefGoogle Scholar
  18. 18.
    Cherukulappurath S, Heinis D, Cesario J, van Hulst NF, Enoch S, Quidant R (2009) Local observation of plasmon focusing in Talbot carpets. Opt Exp 17:23772–23784CrossRefGoogle Scholar
  19. 19.
    Li L, Fu Y, Wu H, Zheng L, Zhang H, Lu Z, Sun Q, Yu W (2011) The Talbot effect of plasmonic nanolenses. Opt Exp 19:19365–19373CrossRefGoogle Scholar
  20. 20.
    Zhang W, Zhao C, Wang J, Zhang J (2009) An experimental study of the plasmonic Talbot effect. Opt Exp 17:19757–19762CrossRefGoogle Scholar
  21. 21.
    Patorski K (1989) The self-imaging phenomenon and its applications. Prog Opt 27:3–10Google Scholar
  22. 22.
    Lohman AW, Thomas JA (1990) Making an array illumination based on the Talbot effect. Appl Opt 29:4337–4340CrossRefGoogle Scholar
  23. 23.
    Smolyaninov II, Davis CC (1998) Apparent super-resolution in near-field optical imaging of periodic gratings. Opt Lett 23:1346–1347CrossRefGoogle Scholar
  24. 24.
    Moon EE, Chen L, Everett PN, Mondol MK, Smith HI (2004) Nanometer gap measurement and verification via chirped-Talbot effect. J Vac Sci Technol B22:3378–3381CrossRefGoogle Scholar
  25. 25.
    Garcia-Sucerquia J, Albarez-Palacio DC, Kreuzer HJ (2008) High resolution Talbot self-imaging applied to structural characterization of self-assembled microlayers of microspheres. Appl Opt 47:4723–4728CrossRefGoogle Scholar
  26. 26.
    Berry MV (1975) Attenuation and focusing of electromagnetic surface waves rounding gentle bends. J Phys A 8:1952CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.J. P. MorganLondonUK
  2. 2.Department of Physics and AstronomyUniversity of CaliforniaIrvineUSA

Personalised recommendations